如圖,OA=OB,OC=OD,∠O=50°,∠D=35°,則∠AEC等于(   )
A.60°B.50° C.45°D.30°
A

試題分析:

點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握判定兩個(gè)三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在中,,,的中點(diǎn),則的長(zhǎng)是(   ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在下面過程中的橫線上填空,并在括號(hào)內(nèi)注明理由。
如圖,已知∠B =∠C,AD = AE,說明DB與EC相等。

解: 在△ABE和△ACD中
∠B = _______   (已知)
_______ = _______(              )
AD =" AE" (已知)
∴ △ABE ≌△ACD (             )
∴ AB = AC(                                     )
又∵ AD = AE
∴  AB-AD=AC-AE,
即  DB = EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,點(diǎn)A,F(xiàn),C,D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.
 
(1)求證:四邊形BCEF是平行四邊形;
(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AC=DF,AC//DF,AE=DB,求證:BC=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰三角形的兩邊長(zhǎng)分別為4cm和9cm,則第三邊長(zhǎng)為          cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在ABC中,∠A=40º,AB=AC,AB的垂直平分線DE交AC于D,則∠DBC的度數(shù)是        0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC≌△DEF,且∠A=30°,∠E=75°,則∠F=         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).,且DE交△ABC外角的平分線CE于點(diǎn)E,求證:AD=DE.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小亮提出:如圖3,點(diǎn)D是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)          (填“正確”或“不正確”).

查看答案和解析>>

同步練習(xí)冊(cè)答案