【題目】已知如圖,四邊形ABCD中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求這個四邊形的面積.

【答案】解:連接AC,如圖所示:
∵∠B=90°,∴△ABC為直角三角形,
又AB=4,BC=3,
∴根據(jù)勾股定理得:AC= =5,
又AD=13,CD=12,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2 ,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=SABC+SACD= ABBC+ ACCD= ×3×4+ ×12×5=36
【解析】連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對勾股定理的逆定理的理解,了解如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校去年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2400元,購買乙種足球共花費1600元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.

(1)求購買一個甲種足球、一個乙種足球各需多少元;

(2)今年學(xué)校為編排“足球操”,決定再次購買甲、乙兩種足球共50個.如果兩種足球的單價沒有改變,而此次購買甲、乙兩種足球的總費用不超過3500元,那么這所學(xué)校最少可購買多少個甲種足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1 , x2 , x3 , x4 , x5 , x6 , x7是自然數(shù),且x1<x2<x3<x4<x5<x6<x7 , x1+x2=x3 , x2+x3=x4 , x3+x4=x5 , x4+x5=x6 , x5+x6=x7 , 又x1+x2+x3+x4+x5+x6+x7=2010,那么x1+x2+x3的值最大是。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算過程中有錯誤的個數(shù)是( )
;
(2)﹣4×(﹣7)×(﹣125)=﹣(4×125×7);
;
(4)[3×(﹣2)]×(﹣5)=3×2×5.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2x5y0,則xy的值為( 。

A.25B.52C.32D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E是BC邊上一點,只用一把無刻度的直尺在AD邊上作點F,使得DF=BE.

(1)作出滿足題意的點F,簡要說明你的作圖過程;

(2)依據(jù)你的作圖,證明:DF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:喜歡看書的劉翔在看一本數(shù)學(xué)課外讀物,發(fā)現(xiàn)一種解二元一次方程組的方法叫“整體代換”法:例:解方程組
解:將方程②變形:4x+6y+y=3,即2(2x+3y)+y=3…③
把方程①代入③得2×1+y=3,
∴y=1.
把y=1代入①得,x=﹣1,
∴方程組的解為
請你模仿這種方法,解下面方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD=2AB,AH⊥CD于H,M為AD的中點,MN∥AB,連接NH,如果∠D=68°,則∠CHN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果4m×8m=215,那么m=__________.

查看答案和解析>>

同步練習(xí)冊答案