【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=6,AD=10,點(diǎn)P在邊AD上運(yùn)動,以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點(diǎn).
(1)線段AC的長度是 .
(2)如圖2,當(dāng)⊙P與邊CD相切于點(diǎn)F時,求AP的長;
(3)不難發(fā)現(xiàn),當(dāng)⊙P與邊CD相切時,⊙P與平行四邊形ABCD的邊有三個公共點(diǎn),隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個數(shù)也在變化,若公共點(diǎn)的個數(shù)為4,直接寫出相對應(yīng)的AP的值的取值范圍 .
【答案】(1)8;(2)AP=;(3)<AP<或AP=5.
【解析】
(1)在Rt△ABC中,直接利用勾股定理求解即可;
(2)連接PF,如圖3,利用平行四邊形的性質(zhì)和切線的性質(zhì)可得PF∥AC,進(jìn)而可證明△DPF∽△DAC,然后根據(jù)相似三角形的性質(zhì)列比例式求解即得AP的長;
(3)先利用平行四邊形的面積求出當(dāng)⊙P與BC相切時圓的半徑,可發(fā)現(xiàn)此時⊙P與平行四邊形ABCD的邊有5個公共點(diǎn);再分兩種情況:①⊙P與邊AD、CD分別有兩個公共點(diǎn);②⊙P過點(diǎn)A、C、D三點(diǎn),分別求出即可得到答案.
解:(1)∵平行四邊形ABCD中,AB=6,AD=10,
∴BC=AD=10,
∵AB⊥AC,
∴在Rt△ABC中,由勾股定理得:AC=,
故答案為:8;
(2)如圖3所示,連接PF,設(shè)AP=x,則DP=10﹣x,PF=x,
∵⊙P與邊CD相切于點(diǎn)F,
∴PF⊥CD,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∵AB⊥AC,
∴AC⊥CD,
∴AC∥PF,
∴△DPF∽△DAC,
∴,即,
解得:x=,
即AP=;
(3)當(dāng)⊙P與BC相切時,設(shè)切點(diǎn)為G,連接PG,如圖4,則SABCD=×6×8×2=10PG,解得:PG=,此時⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個數(shù)為5;
①當(dāng)⊙P與邊AD、CD分別有兩個公共點(diǎn),與BC沒有公共點(diǎn)時,<AP<,即此時⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個數(shù)為4;
②當(dāng)⊙P過點(diǎn)A、C、D三點(diǎn),如圖5,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個數(shù)為4,此時AP=5,
綜上所述,AP的值的取值范圍是:<AP<或AP=5,
故答案為:<AP<或AP=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點(diǎn)
(1)求b,k的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當(dāng)直線與雙曲線沒有交點(diǎn)時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A(0,4)、B(-4,4)、C(-6,2),請?jiān)诰W(wǎng)格圖中進(jìn)行如下操作:
(1)利用網(wǎng)格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);
(2)連接AD、CD,則⊙D的半徑為_ __(結(jié)果保留根號),∠ADC的度數(shù)為_ __;
(3)若扇形DAC是一個圓錐的側(cè)面展開圖,求該圓錐底面半徑.(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB長為6,弦AC長為2,∠ACB的平分線交⊙O于點(diǎn)D.
(1)求BD的長;
(2)將△ADC繞D點(diǎn)順時針方向旋轉(zhuǎn)90°,請補(bǔ)充旋轉(zhuǎn)后圖形,并計(jì)算CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于點(diǎn)A(﹣2,0),點(diǎn)B(1,0),交y軸于點(diǎn)C(0,2).
(1)求二次函數(shù)的解析式;
(2)連接AC,在直線AC上方的拋物線上有一點(diǎn)N,過點(diǎn)N作y軸的平行線,交直線AC于點(diǎn)F,設(shè)點(diǎn)N的橫坐標(biāo)為n,線段NF的長為l,求l關(guān)于n的函數(shù)關(guān)系式;
(3)若點(diǎn)M在x軸上,是否存在點(diǎn)M,使以B、C、M為頂點(diǎn)的三角形是等腰三角形,若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某中學(xué)九年級數(shù)學(xué)活動小組選定測量學(xué)校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1:,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師和同學(xué)們做一個游戲:他在三張硬紙片上分別寫出一個代數(shù)式,背面分別標(biāo)上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x2+5x+6,翻開紙片③是3x2﹣x﹣2.
解答下列問題
(1)求紙片①上的代數(shù)式;
(2)若x是方程2x=﹣x﹣9的解,求紙片①上代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】時代天街某商場經(jīng)營的某品牌書包,6月份的銷售額為20000元,7月份因?yàn)閺S家提高了出廠價(jià),商場把該品牌書包售價(jià)上漲20%,結(jié)果銷量減少50個,使得銷售額減少了2000元.
(1)求6月份該品牌書包的銷售單價(jià);
(2)若6月份銷售該品牌書包獲利8000元,8月份商場為迎接中小學(xué)開學(xué)做促銷活動,該書包在6月售價(jià)的基礎(chǔ)上一律打八折銷售,若成本上漲5%,則銷量至少為多少個,才能保證8月份的利潤比6月份的利潤至少增長6.25%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com