【題目】如圖,在平面直角坐標系中,的三個頂點的坐標分別為,每個小方格都是邊長為1個單位長度的正方形

先向上平移2個單位長度,再向右平移4個單位長度得到A、B、過C的對應點分別為點、、,畫出平移后的;

繞著坐標原點O順時針旋轉得到、、的對應點分別為點、、,畫出旋轉后的;

在旋轉過程中,點旋轉到點所經(jīng)過的路徑的長結果用含的式子表示

【答案】畫圖見解析;畫圖見解析;

【解析】

分別將點A、B、C的縱坐標加2,橫坐標加4,即可得到、、的坐標,連接,即可,

利用網(wǎng)格和旋轉的性質畫出即可,

利用勾股定理求出的長,再根據(jù)弧長公式即可求得答案.

根據(jù)題意得:,,

連接,,如下圖:

利用網(wǎng)格和旋轉的性質畫出如上圖所示

,

,

旋轉到點所經(jīng)過的路徑的長為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進兩種商品,購買1商品比購買1商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.

1)求購買一個商品和一個商品各需要多少元;

2)商店準備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABPACQBPCQ.

(1)求證:△ABP≌△ACQ;

(2)請判斷△APQ是什么三角形,試說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點ABC(即三角形的頂點都在格點上).

1ABC的面積為__________;

2)在圖中作出ABC關于直線MN的對稱圖形A′B′C′.

3)利用網(wǎng)格紙,在MN上找一點P,使得PB+PC的距離最短.( 保留痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AB=12,ACABBDAB,AC=BD=8P在線段AB上以每秒2個單位的速度由點A向點B運動,同時,點Q在線段BD上由B點向點D運動。它們的運動時間為t(s).

1)若點Q的運動速度與點P的運動速度相等,當t=2時,ACPBPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;

2)如圖2,將圖1中的ACAB,BDAB改為CAB=DBA=60°”,其他條件不變。設點Q的運動速度為每秒x個單位,是否存在實數(shù)x,使得ACPBPQ全等?若存在,求出相應的x,t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦打造平安校園活動,隨機抽取了部分學生進行校園安全知識測試將這些學生的測試結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格,并將測試結果繪制成如下統(tǒng)計圖請你根據(jù)圖中信息,解答下列問題:

本次參加校園安全知識測試的學生有多少人?

計算B級所在扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;

若該校有學生1000名,請根據(jù)測試結果,估計該校達到及格和及格以上的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線分別交x軸、y軸于A、B兩點,拋物線經(jīng)過點A,和x軸的另一個交點為C.

求拋物線的解析式;

如圖1,點D是拋物線上的動點,且在第三象限,求面積的最大值;

如圖2,經(jīng)過點的直線交拋物線于點P、Q,連接CP、CQ分別交y軸于點E、F,求的值.

備注:拋物線頂點坐標公式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),到達目的地后停止,設慢車行駛時間為小時,兩車之間的距離為千米,兩者的關系如圖所示,根據(jù)圖象探究:

1)看圖填空:兩車出發(fā) 小時,兩車相遇;

2)求快車和慢車的速度;

3)求線段所表示的的關系式,并求兩車行駛小時兩車相距多少千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學進行登山比賽,甲同學和乙同學沿相同的路線同時在早800從山腳出發(fā)前往山頂,甲同學到達山頂后休息1小時,沿原路以每小時6千米的速度下山,在這一過程中,各自行進的路程隨所用時間變化的圖象如圖所示,根據(jù)提供信息得出以下四個結論:

甲同學從山腳到達山頂?shù)穆烦虨?/span>12千米;

乙同學登山共用4小時;

甲同學在1400返回山腳;

甲同學返回與乙同學相遇時,乙同學距登到山頂還有千米的路程.

以上四個結論正確的有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案