【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點(diǎn)B的中心對(duì)稱(chēng)得C2,C2與x軸交于另一點(diǎn)C,將C2關(guān)于點(diǎn)C的中心對(duì)稱(chēng)得C3,連接C1與C3的頂點(diǎn),則圖中陰影部分的面積為_____.
【答案】32
【解析】試題分析:∵拋物線y=﹣x2﹣2x+3與x軸交于點(diǎn)A、B,
∴當(dāng)y=0時(shí),則﹣x2﹣2x+3=0,
解得x=﹣3或x=1,
則A,B的坐標(biāo)分別為(﹣3,0),(1,0),
AB的長(zhǎng)度為4,
從C1,C3兩個(gè)部分頂點(diǎn)分別向下作垂線交x軸于E、F兩點(diǎn).
根據(jù)中心對(duì)稱(chēng)的性質(zhì),x軸下方部分可以沿對(duì)稱(chēng)軸平均分成兩部分補(bǔ)到C1與C2.
如圖所示,陰影部分轉(zhuǎn)化為矩形.
根據(jù)對(duì)稱(chēng)性,可得BE=CF=4÷2=2,則EF=8
利用配方法可得y=﹣x2﹣2x﹣3=﹣(x+1)2+4
則頂點(diǎn)坐標(biāo)為(﹣1,4),即陰影部分的高為4,
S陰=8×4=32.
考點(diǎn):拋物線與x軸的交點(diǎn).
【題型】填空題
【結(jié)束】
17
【題目】解方程:(1)2(3x﹣1)=16;(2);(3) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某游樂(lè)園有一個(gè)滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=(2m+1)x+m﹣3
(1)若函數(shù)圖象經(jīng)過(guò)原點(diǎn),求m的值;
(2)若函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為(0,﹣2),求m的值;
(3)若y隨著x的增大而增大,求m的取值范圖;
(4)若函數(shù)圖象經(jīng)過(guò)第一、三,四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,七、八年級(jí)根據(jù)初賽成績(jī)各選出5名選手組成代表隊(duì)參加決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
七年級(jí) | a | 85 | b | S七年級(jí)2 |
八年級(jí) | 85 | c | 100 | 160 |
(1)根據(jù)圖示填空:a= ,b= ,c= ;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)代表隊(duì)的決賽成績(jī)較好?
(3)計(jì)算七年級(jí)代表隊(duì)決賽成績(jī)的方差S七年級(jí)2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC各頂點(diǎn)的坐標(biāo)分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在圖中畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A1B1C1;
(2)在圖中畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求點(diǎn)A運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖2,將△ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.
【答案】(1)BF=AC,理由見(jiàn)解析;(2)NE=AC,理由見(jiàn)解析.
【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.
試題解析:
(1)BF=AC,理由是:
如圖1,∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵,
∴△ADC≌△BDF(AAS),
∴BF=AC;
(2)NE=AC,理由是:
如圖2,由折疊得:MD=DC,
∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,
即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,
∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=AC.
【題型】解答題
【結(jié)束】
19
【題目】某校學(xué)生會(huì)決定從三明學(xué)生會(huì)干事中選拔一名干事當(dāng)學(xué)生會(huì)主席,對(duì)甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測(cè)試成績(jī)?nèi)缦卤硭荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī)/分 | ||
甲 | 乙 | 丙 | |
筆試 | 75 | 80 | 90 |
面試 | 93 | 70 | 68 |
根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對(duì)三人進(jìn)行民主測(cè)評(píng),三人得票率如扇形統(tǒng)計(jì)圖所示(沒(méi)有棄權(quán),每位同學(xué)只能推薦1人),每得1票記1分.
(1)分別計(jì)算三人民主評(píng)議的得分;
(2)根據(jù)實(shí)際需要,學(xué)校將筆試、面試、民主評(píng)議三項(xiàng)得分按3:3:4的比例確定個(gè)人成績(jī),三人中誰(shuí)會(huì)當(dāng)選學(xué)生會(huì)主席?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是兩種長(zhǎng)方形鋁合金窗框,已知窗框的長(zhǎng)都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個(gè),(2)型的窗框2個(gè).
(1)用含x、y的式子表示共需鋁合金的長(zhǎng)度;
(2)若1m鋁合金的平均費(fèi)用為100元,求當(dāng)x=1.2,y=1.5時(shí),鋁合金的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)A、B分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長(zhǎng)度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn),求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F,求證:F為DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F在BD上,且BF=DE.
(1)寫(xiě)出圖中所有你認(rèn)為全等的三角形;
(2)延長(zhǎng)AE交BC的延長(zhǎng)線于G,延長(zhǎng)CF交DA的延長(zhǎng)線于H(請(qǐng)補(bǔ)全圖形),證明四邊形AGCH是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com