【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點(diǎn)B的中心對(duì)稱(chēng)得C2,C2與x軸交于另一點(diǎn)C,將C2關(guān)于點(diǎn)C的中心對(duì)稱(chēng)得C3,連接C1與C3的頂點(diǎn),則圖中陰影部分的面積為_____

【答案】32

【解析】試題分析:拋物線y=﹣x2﹣2x+3x軸交于點(diǎn)A、B

當(dāng)y=0時(shí),則﹣x2﹣2x+3=0,

解得x=﹣3x=1,

AB的坐標(biāo)分別為(﹣3,0),(1,0),

AB的長(zhǎng)度為4,

C1,C3兩個(gè)部分頂點(diǎn)分別向下作垂線交x軸于E、F兩點(diǎn).

根據(jù)中心對(duì)稱(chēng)的性質(zhì),x軸下方部分可以沿對(duì)稱(chēng)軸平均分成兩部分補(bǔ)到C1C2

如圖所示,陰影部分轉(zhuǎn)化為矩形.

根據(jù)對(duì)稱(chēng)性,可得BE=CF=4÷2=2,則EF=8

利用配方法可得y=﹣x2﹣2x﹣3=﹣x+12+4

則頂點(diǎn)坐標(biāo)為(﹣1,4),即陰影部分的高為4,

S=8×4=32

考點(diǎn):拋物線與x軸的交點(diǎn).

型】填空
結(jié)束】
17

【題目】解方程:(1)2(3x﹣1)=16;(2);(3)

【答案】(1)x=3;(2)x=﹣11;(3)x=

【解析】試題分析:按照解一元一次方程的步驟解方程即可.

試題解析:1)去括號(hào)得,

移項(xiàng)、合并得,

系數(shù)化為1得,

2)去分母得,

去括號(hào)得,

移項(xiàng)、合并得,

系數(shù)化為1得,

3)方程可化為

去分母得,

去括號(hào)得,

移項(xiàng)、合并得,

系數(shù)化為1得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某游樂(lè)園有一個(gè)滑梯高度AB,高度AC3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)

(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=(2m+1)x+m﹣3

(1)若函數(shù)圖象經(jīng)過(guò)原點(diǎn),求m的值;

(2)若函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為(0,﹣2),求m的值;

(3)若y隨著x的增大而增大,求m的取值范圖;

(4)若函數(shù)圖象經(jīng)過(guò)第一、三,四象限,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉辦網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽,七、八年級(jí)根據(jù)初賽成績(jī)各選出5名選手組成代表隊(duì)參加決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

七年級(jí)

a

85

b

S七年級(jí)2

八年級(jí)

85

c

100

160

1)根據(jù)圖示填空:a   ,b   ,c   ;

2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)代表隊(duì)的決賽成績(jī)較好?

3)計(jì)算七年級(jí)代表隊(duì)決賽成績(jī)的方差S七年級(jí)2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC各頂點(diǎn)的坐標(biāo)分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).

(1)在圖中畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A1B1C1

(2)在圖中畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求點(diǎn)A運(yùn)動(dòng)路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點(diǎn)F.

(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;

(2)如圖2,將ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DEAM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.

【答案】(1)BF=AC,理由見(jiàn)解析;2NE=AC,理由見(jiàn)解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1,ADBC,BEAC,

∴∠ADB=AEF=90°,

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD,

∴∠DAC=EBC,

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC;

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM

AE=EC,

BEAC,

AB=BC,

∴∠ABE=CBE,

由(1)得:ADC≌△BDF

∵△ADC≌△ADM,

∴△BDF≌△ADM,

∴∠DBF=MAD,

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE,

NAE=2NAD=2CBE,

∴∠ANE=NAE=45°,

AE=EN,

EN=AC

型】解答
結(jié)束】
19

【題目】某校學(xué)生會(huì)決定從三明學(xué)生會(huì)干事中選拔一名干事當(dāng)學(xué)生會(huì)主席,對(duì)甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測(cè)試成績(jī)?nèi)缦卤硭荆?/span>

測(cè)試項(xiàng)目

測(cè)試成績(jī)/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對(duì)三人進(jìn)行民主測(cè)評(píng),三人得票率如扇形統(tǒng)計(jì)圖所示(沒(méi)有棄權(quán),每位同學(xué)只能推薦1人),每得1票記1分

(1)分別計(jì)算三人民主評(píng)議的得分;

(2)根據(jù)實(shí)際需要,學(xué)校將筆試、面試、民主評(píng)議三項(xiàng)得分按3:3:4的比例確定個(gè)人成績(jī),三人中誰(shuí)會(huì)當(dāng)選學(xué)生會(huì)主席?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是兩種長(zhǎng)方形鋁合金窗框,已知窗框的長(zhǎng)都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個(gè),(2)型的窗框2個(gè).

(1)用含x、y的式子表示共需鋁合金的長(zhǎng)度;

(2)若1m鋁合金的平均費(fèi)用為100元,求當(dāng)x=1.2,y=1.5時(shí),鋁合金的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)AB分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.

1)求AB的長(zhǎng)度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點(diǎn),求證:BD=OE;

3)在(2)的條件下,連接DEABF,求證:FDE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EFBD上,且BFDE

1)寫(xiě)出圖中所有你認(rèn)為全等的三角形;

2)延長(zhǎng)AEBC的延長(zhǎng)線于G,延長(zhǎng)CFDA的延長(zhǎng)線于H(請(qǐng)補(bǔ)全圖形),證明四邊形AGCH是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案