【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長(zhǎng)線交BC于Q.
(1)求證:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求t為何值時(shí),四邊形PBQD是菱形.

【答案】
(1)證明:∵四邊形ABCD是矩形,

∴AD∥BC,

∴∠PDO=∠QBO,

又∵O為BD的中點(diǎn),

∴OB=OD,

在△POD與△QOB中,

∴△POD≌△QOB(ASA),

∴OP=OQ;


(2)解:PD=8﹣t,

∵四邊形PBQD是菱形,

∴PD=BP=8﹣t,

∵四邊形ABCD是矩形,

∴∠A=90°,

在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,

即62+t2=(8﹣t)2,

解得:t= ,

即運(yùn)動(dòng)時(shí)間為 秒時(shí),四邊形PBQD是菱形.


【解析】(1)本題需先根據(jù)四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據(jù)O為BD的中點(diǎn)得出△POD≌△QOB,即可證出OP=OQ.(2)本題需先根據(jù)已知條件得出∠A的度數(shù),再根據(jù)AD=8厘米,AB=6厘米,得出BD和OD的長(zhǎng),再根據(jù)四邊形PBQD是菱形時(shí),即可求出t的值,判斷出四邊形PBQD是菱形.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和菱形的性質(zhì),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解中學(xué)生的體能情況,我校隨機(jī)抽取了九年級(jí)男生50名,進(jìn)行立定跳遠(yuǎn)測(cè)試,將所得數(shù)據(jù)按成績(jī)單位:米高低繪制成頻數(shù)分布直方圖,如圖所示,其中按成績(jī)分組前四個(gè)小組的頻率依次為,完成下列問題注:圖中成績(jī)數(shù)據(jù)含低值不含高值

第四小組的頻數(shù)是多少?

補(bǔ)全統(tǒng)計(jì)圖;

規(guī)定成績(jī)?cè)?/span>米以上為及格, 米以上為優(yōu)秀,測(cè)試的學(xué)生的及格率是多少??jī)?yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、、第10層,每層高度為3 m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽光線與水平線的夾角為α

(1) 用含α的式子表示h(不必指出α的取值范圍);

(2) 當(dāng)α30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把二次函數(shù)y=x2的圖象沿著x軸向右平移2個(gè)單位,再向上平移3個(gè)單位,所得到的函數(shù)圖象的解析式為(
A.y=(x+2)2+3
B.y=(x﹣2)2+3
C.y=(x+2)2﹣3
D.y=(x﹣2)2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若有一等差數(shù)列,前九項(xiàng)和為54,且第一項(xiàng)、第四項(xiàng)、第七項(xiàng)的和為36,則此等差數(shù)列的公差為何?( )

A.﹣6 B.﹣3 C.3 D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°FO=FC,則下列結(jié)論:①FB垂直平分OC②△EOB≌△CMB;③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中,①兩條直線被第三條直線所截,同位角相等;②同角的余角相等;③負(fù)數(shù)有一個(gè)立方根;④相等的角是對(duì)頂角;假命題有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a表示有理數(shù),則下列說法正確的是(  )

A.a表示正數(shù)B.-a表示負(fù)數(shù)C.|a|表示正數(shù)D.-a表示a的相反數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(a,a﹣2)在第四象限,則a的取值范圍是(
A.﹣2<a<0
B.0<a<2
C.a>2
D.a<0

查看答案和解析>>

同步練習(xí)冊(cè)答案