【題目】已知,為等邊三角形,點為直線上一動點(點不與、重合).以為邊作菱形,使,連接.
如圖,當點在邊上時,
①求證:;②請直接判斷結(jié)論是否成立;
如圖,當點在邊的延長線上時,其他條件不變,結(jié)論是否成立?請寫出、、之間存在的數(shù)量關系,并寫出證明過程;
如圖,當點在邊的延長線上時,且點、分別在直線的異側(cè),其他條件不變,請補全圖形,并直接寫出、、之間存在的等量關系.
【答案】①證明見解析,②結(jié)論:成立;(2)結(jié)論不成立.、、之間的等量關系是.
補全圖形如圖見解析,、、之間的等量關系是:(或以及這兩個等式的正確變式).
【解析】
(1)此題只需由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判斷兩三角形全等得出∠ADB=∠AFC;
(2)此題應先判斷得出正確的等量關系,然后再根據(jù)△ABD≌△ACF即可證明;
(3)此題只需補全圖形后由圖形即可得出∠AFC、∠ACB、∠DAC之間存在的等量關系.
解:①證明:∵為等邊三角形,
∴,,
∵,
∴,
∴,
∵四邊形是菱形,∴,
在和中
,,,
∴,
∴,
②結(jié)論:成立.
結(jié)論不成立.
、、之間的等量關系是.
證明:∵為等邊三角形,
∴,
,
∵,
∴,
∵四邊形是菱形,
∴.
在和中
,,,
∴.
∴.
又∵,
∴.
補全圖形如下圖:
、、之間的等量關系是:
(或以及這兩個等式的正確變式).
科目:初中數(shù)學 來源: 題型:
【題目】用圖1中四個完全一樣的直角三角形可以拼成圖2的大正方形。
解答下列問題:
(1)請用含、、的代數(shù)式表示大正方形的面積.
方法1: ;方法2: .
(2)根據(jù)圖2,利用圖形的面積關系,推導、、之間滿足的關系式.
(3)利用(2)的關系式解答:如果大正方形的面積是25,且,求小正方形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩個全等的等邊和拼成如圖的菱形.現(xiàn)把一個含角的三角板與這個菱形疊合,使三角板的角的頂點與點重合,兩邊分別與、重合.將三角板繞點逆時針方向旋轉(zhuǎn).
如圖,當三角板的兩邊分別與菱形的兩邊、相交于點、時,探求、、的數(shù)量關系,并說明理由;
繼續(xù)旋轉(zhuǎn)三角板,當兩邊、分別交、的延長線于點、時,畫出旋轉(zhuǎn)后相應的圖形,并直接寫出、、滿足的數(shù)量關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】過的頂點的兩條直線分三角形邊上的中線所成的比,則這兩條直線分邊所成的比為( )
A. 4:5:3 B. 3:4:2 C. 2:3:1 D. 1:1:1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,,,.
為邊BC上一點,將沿直線AP翻折至的位置點B落在點E處
如圖1,當點E落在CD邊上時,利用尺規(guī)作圖,在圖1中作出滿足條件的圖形不寫作法,保留作圖痕跡,用2B鉛筆加粗加黑并直接寫出此時______;
如圖2,若點P為BC邊的中點,連接CE,則CE與AP有何位置關系?請說明理由;
點Q為射線DC上的一個動點,將沿AQ翻折,點D恰好落在直線BQ上的點處,則______;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知于,于,要計算,兩地的距離,甲、乙、丙、丁四組同學分別測量了部分線段的長度和角的度數(shù),得到以下四組數(shù)據(jù):甲:,;乙:,,;丙:和;。,,.其中能求得,兩地距離的有( )
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AD為△ABC的中線,延長AD至E,使DE=AD.
(1)試證明:△ACD≌△EBD;
(2)用上述方法解答下列問題:如圖2,AD為△ABC的中線,BMI交AD于C,交AC于M,若AM=GM,求證:BG=AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com