【題目】在四邊形ABCD中,,,.
為邊BC上一點,將沿直線AP翻折至的位置點B落在點E處
如圖1,當點E落在CD邊上時,利用尺規(guī)作圖,在圖1中作出滿足條件的圖形不寫作法,保留作圖痕跡,用2B鉛筆加粗加黑并直接寫出此時______;
如圖2,若點P為BC邊的中點,連接CE,則CE與AP有何位置關系?請說明理由;
點Q為射線DC上的一個動點,將沿AQ翻折,點D恰好落在直線BQ上的點處,則______;
【答案】(1)①6;②結論:(2)為4和16.
【解析】
如圖1中,以A為圓心AB為半徑畫弧交CD于E,作的平分線交BC于點P,點P即為所求理由勾股定理可得DE.
如圖2中,結論:只要證明,即可解決問題.
分兩種情形分別求解即可解決問題.
解:如圖1中,以A為圓心AB為半徑畫弧交CD于E,作的平分線交BC于點P,點P即為所求.
在中,,,,
,
故答案為6.
如圖2中,結論:.
理由:由翻折不變性可知:,,
垂直平分線段BE,
即,
,
,
,
.
如圖中,當點Q在線段CD上時,設.
在中,,,,
,
在中,,
,
,
.
如圖中,當點Q在線段DC的延長線上時,
,
,
,
,
,
在中,,
,
綜上所述,滿足條件的DQ的值為4或16.
故答案為4和16.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標為A(-2.3)、B(-6,0)、C(-1,0)
(1) 將△ABC繞坐標原點O旋轉180°,畫出圖形,并寫出點A的對應點A′ 的坐標________;
(2)將△ABC繞坐標原點O逆時針旋轉90°,
直接寫出點A的對應點A″的坐標___________;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD=BC,連接CD;
(2)線段AC的長為___,CD的長為___,AD的長為___.
(3)試判斷△ACD的形狀,并求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調查,把調查結果分為四類(A.特別好,B.好,C.一般,D.較差)后,再將調查結果繪制成兩幅不完整的統(tǒng)計圖(如圖).請根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調查中,王老師一共調查了名學生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)假定全校各班實施新課程改革效果一樣,全校共有學生2 400人,請估計該校新課程改革效果達到A類的有多少學生;
(4)為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,BD是斜邊上高動點P從點A出發(fā)沿AB邊由A向終點B以的速度勻速移動,動點Q從點B出發(fā)沿射線BC以的速度勻速移動,點P、Q同時出發(fā),當點P停止運動,點Q也隨之停止連接AQ,交射線BD于點設點P運動時間為t秒.
在運動過程中,的面積始終是的面積的2倍,為什么?
當點Q在線段BC上運動時,t為何值時,和相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校要從甲、乙兩個跳遠運動員中選一人參加一項比賽,在最近的10次選撥賽中,他們的成績單位:如下:
甲:585,596,610,598,612,597,604,600,613,601
乙:613,618,580,574,618,593,585,590,598,624
分別求甲、乙的平均成績;
分別求甲、乙這十次成績的方差;
這兩名運動員的運動成績各有什么特點?歷屆比賽成績表明,成績達到就很可能奪冠你認為應選誰參加比賽?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,點 D,E 分別在邊 AC,AB 上,BD 與 CE 交于點 O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個條件中,由哪兩個條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B.∠D的關系,說明理由.(提示:三角形的內角和等于180°)
①填空或填寫理由
解:猜想∠BPD+∠B+∠D=360°
理由:過點P作EF∥AB,
∴∠B+∠BPE=180°______
∵AB∥CD,EF∥AB,
∴______∥_____,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
∴∠EPD+______=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
②依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B.∠D的關系,并說明理由.
③觀察圖(3)和(4),已知AB∥CD,直接寫出圖中的∠BPD與∠B.∠D的關系,不說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com