【題目】如圖,在四邊形ABCD中,,過對角線AC的中點O,分別交邊AB,CD于點E,F,連接CE,AF

求證:四邊形AECF是菱形;

,OF5,求四邊形AECF的面積.

【答案】1)見解析;(220

【解析】

1)先證明△AEO≌△CFO得到AE=CF,根據(jù)證得四邊形AECF是平行四邊形,再根據(jù)即可證得結論;

2)由(1)四邊形AECF是菱形得到OF=OE=2,根據(jù)OF5求出OA,得到AC,根據(jù)菱形的面積等于對角線乘積的一半得到答案.

1)∵,

∴∠EAC=FCA,∠AEF=CFE,

∵對角線AC的中點為O,

OA=OC,

∴△AEO≌△CFO,

AE=CF,

,

∴四邊形AECF是平行四邊形,

,

∴四邊形AECF是菱形;

2)∵四邊形AECF是菱形,

OF=OE=2,OA=OC

OF5

OA=OC=5,

AC=10,

∴四邊形AECF的面積=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個梯子AB斜靠在一豎直的墻AO上,測得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時梯子的底端也恰好外移0.5米,則梯子的長度AB為(

A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x與雙曲線y=x0)交于點A,將直線y=x向右平移3個單位后,與雙曲線y=x0)交于點B,與x軸交于點C,若=2,則k=( 。

A. B. 4 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以△ABC的邊AB,AC為邊分別向外作正方形ABDE和正方形ACFG,連接EG,MEG的中點,連接AM

1)如圖1,∠BAC=90°,試判斷AMBC關系?

2)如圖2,∠BAC≠90°,圖1中的結論是否成立?若不成立,說明理由;若成立,給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于函數(shù)的四個命題:

①當x=0時,y有最小值6;

m為任意實數(shù),x=2-m時的函數(shù)值大于x=2+m時的函數(shù)值;

③若函數(shù)圖象過點(a,m0) 和(b, m0+1),其中a>0,b>2,則ab;

④若m>2,且m是整數(shù),當mxm+1 時,y的整數(shù)值有(2m-2).

其中真命題有______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年3月國際風箏節(jié)期間,王大伯決定銷售一批風箏,經(jīng)市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數(shù)關系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?

(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm /s,連接PQ,設運動的時間為t(單位:s)(0≤t≤4).解答下列問題:

(1)當t為何值時,PQ∥BC.

(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.

(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點 D,交AC 于點 E.

(1)判斷 BE △DCE 的外接圓⊙O 的位置關系,并說明理由;

(2) BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.

查看答案和解析>>

同步練習冊答案