【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm /s,連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)當(dāng)s時(shí),PQ∥BC.(2)不存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分.(3)存在時(shí)刻t,使四邊形AQPQ′為菱形,此時(shí)菱形的面積為cm2.
【解析】(1)證△APQ∽△ABC,推出=,代入得出=,求出方程的解即可;(2)假設(shè)存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分,得出方程-t2+6t=××8×6,求出此方程無(wú)解,即可得出答案.
(3)首先根據(jù)菱形的性質(zhì)及相似三角形比例線段關(guān)系,求得PQ、OD、和PD的長(zhǎng)度;然后在Rt△PQD中,根據(jù)勾股定理列出方程(8-t)2-(6-t)2=(2t)2,求得時(shí)間t的值;最后根據(jù)菱形的面積等于△AQP的面積的2倍,進(jìn)行計(jì)算即可.
解:(1)BP=2t,則AP=10﹣2t.
∵PQ∥BC,
∴△APQ∽△ABC,
∴=,
即=,
解得:t=,
∴當(dāng)t=時(shí),PQ∥BC.
(2)如答圖1所示,過(guò)P點(diǎn)作PD⊥AC于點(diǎn)D.
∴PD∥BC,∴,即,解得.
,
假設(shè)存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分,
則有S△AQP= S△ABC,而S△ABC=ACBC=24,∴此時(shí)S△AQP=12.
S△AQP,
∴,化簡(jiǎn)得:t2﹣5t+10=0,
∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程無(wú)解,
∴不存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分.
(3)假設(shè)存在時(shí)刻t,使四邊形AQPQ′為菱形,則有AQ=PQ=BP=2t.
如答圖2所示,過(guò)P點(diǎn)作PD⊥AC于點(diǎn)D,則有PD∥BC,
∴,即,
解得: , ,
∴QD=AD﹣AQ= .
在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,
即,
化簡(jiǎn)得:13t2﹣90t+125=0,
解得:t1=5,t2= ,
∵t=5s時(shí),AQ=10cm>AC,不符合題意,舍去,∴t=.
由(2)可知,S△AQP=
∴S菱形AQPQ′=2S△AQP=2×=cm2.
所以存在時(shí)刻t,使四邊形AQPQ′為菱形,此時(shí)菱形的面積為cm2.
“點(diǎn)睛”本題考查了三角形的面積,勾股定理的逆定理,相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生綜合運(yùn)用進(jìn)行推理和計(jì)算的能力.解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造相似三角形以及直角三角形,根據(jù)相似三角形的對(duì)應(yīng)邊成比例以及勾股定理進(jìn)行列式求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每個(gè)月可賣(mài)出180件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣(mài)出10件,但每件售價(jià)不能高于35元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每個(gè)月的銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;求x為何值時(shí)y的值為1920?
(2)每件商品的售價(jià)為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常常可以得到一些有用的式子,或可以求出一些不規(guī)則圖形的面積.
(1)如圖1,是將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的方法計(jì)算這個(gè)圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請(qǐng)寫(xiě)出來(lái).
(2)如圖2,是將兩個(gè)邊長(zhǎng)分別為a和b的正方形拼在一起,B、C、G三點(diǎn)在同一直線上,連接BD和BF,若兩正方形的邊長(zhǎng)滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=45°,點(diǎn)P在∠AOB內(nèi)部,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則P1 , O,P2三點(diǎn)構(gòu)成的三角形是( )
A.直角三角形
B.等腰三角形
C.等邊三角形
D.等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=1,AB=2.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB、CD交于點(diǎn)G、F,AE與FG交于點(diǎn)O.當(dāng)△AED的外接圓與BC相切于BC的中點(diǎn)N.則折痕FG的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E為等腰△ABC的底邊BC上一動(dòng)點(diǎn),過(guò)E作EF⊥BC交AB于D,交CA的延長(zhǎng)線于F,問(wèn):
(1)∠F與∠ADF的關(guān)系怎樣?說(shuō)明理由;
(2)若E在BC延長(zhǎng)線上,其余條件不變,上題的結(jié)論是否成立?若不成立,說(shuō)明理由;若成立,畫(huà)出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,BE與CD相交于點(diǎn)O.
(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com