如圖1,是用硬紙板做成的兩個全等的直角三角形,兩直角邊的長分別為a和b,斜邊長為c,圖2是以c為直角邊的等腰直角三角形,用圖1和圖2可拼成圖3的圖形
(1)請指出圖3是什么圖形,并用它證明勾股定理.
(2)請用若干個圖1中的直角三角形拼成一個能證明勾股定理圖形.(畫出圖形,不用證明)

【答案】分析:(1)根據(jù)圖形可知是梯形,再根據(jù)梯形的面積等于三個直角三角形的面積的和,列式整理即可證明;
(2)取四個直角三角形,以斜邊c為邊長組成正方形,中間空出的是一個小正方形,然后利用大正方形的面積等于四個直角三角形的面積加上中間小正方形的面積,列式整理即可得證.
解答:解:(1)是梯形,
梯形的面積=(a+b)(a+b)=2××ab+c2
(a2+2ab+b2)=ab+c2,
a2+b2=c2

(2)如圖所示,圖形可以證明.

點評:本題考查了勾股定理的證明,根據(jù)圖形的面積列式整理即可,(2)中圖形答案不唯一,富有創(chuàng)造性,只要是根據(jù)面積可以推出勾股定理即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)
(1)實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板A1B1C1D1的面積是多少平方米?
精英家教網(wǎng)
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板A2B2C2D2做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.
精英家教網(wǎng)
(2)拓展思維:北方一家水果商打算在基地購進一批“野生楊梅”,但他感覺(1)中的紙箱體積太大,搬運吃力,要求將紙箱的底面周長、底面面積和高都設(shè)計為原來的一半,你認(rèn)為水果商的要求能辦到嗎?請利用函數(shù)圖象驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)二模)在綜合實踐課上,小明要用如圖所示的矩形硬紙板做一個裝垃圾的無蓋紙盒.已知這張矩形硬紙板ABCD邊AB的長是40cm,邊AD的長是20cm,裁去角上四個小正方形之后,就可以折成一個無蓋紙盒.設(shè)這個無蓋紙盒的底面矩形EFMN的面積是y(單位:cm2),紙盒的高是x(單位:cm).
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)老師要求,小明做的無蓋紙盒的高x不能超過寬EF且紙盒的底面矩形EFMN的面積y等于300cm2,求紙盒高的最大整數(shù)值x是多少cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

知識背景:恩施來鳳有一處野生古楊梅群落,其野生楊梅是一種具特殊價值的綠色食品.在當(dāng)?shù)厥袌龀鍪蹠r,基地要求“楊梅”用雙層上蓋的長方體紙箱封裝(上蓋紙板面積剛好等于底面面積的2倍,如圖)
實際運用:如果要求紙箱的高為0.5米,底面是黃金矩形(寬與長的比是黃金比,取黃金比為0.6),體積為0.3立方米.
①按方案1(如圖)做一個紙箱,需要矩形硬紙板A1B1C1D1的面積是多少平方米?
②小明認(rèn)為,如果從節(jié)省材料的角度考慮,采用方案2(如圖)的菱形硬紙板A2B2C2D2做一個紙箱比方案1更優(yōu),你認(rèn)為呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在綜合實踐課上,小明要用如圖所示的矩形硬紙板做一個裝垃圾的無蓋紙盒.已知這張矩形硬紙板ABCD邊AB的長是40cm,邊AD的長是20cm,裁去角上四個小正方形之后,就可以折成一個無蓋紙盒.設(shè)這個無蓋紙盒的底面矩形EFMN的面積是y(單位:cm2),紙盒的高是x(單位:cm).
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)老師要求,小明做的無蓋紙盒的高x不能超過寬EF且紙盒的底面矩形EFMN的面積y等于300cm2,求紙盒高的最大整數(shù)值x是多少cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年黑龍江省哈爾濱市南崗區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

在綜合實踐課上,小明要用如圖所示的矩形硬紙板做一個裝垃圾的無蓋紙盒.已知這張矩形硬紙板ABCD邊AB的長是40cm,邊AD的長是20cm,裁去角上四個小正方形之后,就可以折成一個無蓋紙盒.設(shè)這個無蓋紙盒的底面矩形EFMN的面積是y(單位:cm2),紙盒的高是x(單位:cm).
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)老師要求,小明做的無蓋紙盒的高x不能超過寬EF且紙盒的底面矩形EFMN的面積y等于300cm2,求紙盒高的最大整數(shù)值x是多少cm?

查看答案和解析>>

同步練習(xí)冊答案