精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數量關系是_____________________________

【答案】4AFC=3AEC

【解析】分析:連接AC,設∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,然后根據平行線的性質得出∠AEC=4(x°+y°),∠AFC=3(x°+y°),從而得出答案.

詳解:連接AC,設∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,

∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,

∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°)

∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),

∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),

∴4∠AFC=3∠AEC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABC,AD平分BAC,DGBC且平分BC,DEABE,DFACF

1)求證BE=CF;

2)如果AB=8AC=6,AE、BE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有下列說法:

①過一點有且只有一條直線與已知直線平行;

②無論k取何實數,多項式x2-ky2總能分解成兩個一次因式積的形式;

③ 若(t-3)3-2t=1,則t可以取的值有3個;

關于x,y的方程組,將此方程組的兩個方程左右兩邊分別對應相加,

得到一個新的方程,其中當a每取一個值時,就有一個方程,而這些方程總有一個公共解,則這個公共解是,其中正確的有(

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.

(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;

(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;

(3)從火車站到河流怎樣走最近,畫圖并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點A逆時針旋轉30°后得到△AB′C′,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明(在下面的括號內填上相應的結論或推理的依據):如圖,AD⊥BCD,EG⊥BCG,∠E=∠3,

求證:AD∠BAC的平分線

證明:∵AD⊥BC,EG⊥BC(已知)

∴∠4=∠5=90°( )

∴AD∥EG( )

∴∠1=∠E( ) ∠2=∠3( )

∵∠E=∠3(已知)

∴( )=( )

∴AD∠BAC的平分線(

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】a、bc、d是互不相等的整數(abcd),且abcd9,則:ac+bd_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在ABC中,已知∠BAC45°ADBCD,BD2,DC3,求AD的長. 小萍同學靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出ABD、ACD的軸對稱圖形,D點的對稱點為E、F,延長EBFC相交于G點,得到四邊形AEGF是正方形.AD=x,利用勾股定理,建立關于x的方程模型,即可求出x的值.參考小萍的思路,探究并解答新問題:如圖2,在ABC中,∠BAC30°ADBCD,AD4.請你按照小萍的方法畫圖,得到四邊形AEGF,求BGC的周長.(畫圖所用字母與圖1中的字母對應)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,1次從原點運動到點(1,1),2次接著運動到點(2,0),3次接著運動到點(3,2),…,按這樣的運動規(guī)律經過第2 018次運動后,動點P的坐標是( )

A. (2018,0) B. (2018,1) C. (2018,2) D. (2017,0)

查看答案和解析>>

同步練習冊答案