【題目】如圖,已知AB‖CD,∠EAF =∠EAB,∠ECF=∠ECD ,則∠AFC與∠AEC之間的數量關系是_____________________________
【答案】4∠AFC=3∠AEC
【解析】分析:連接AC,設∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,然后根據平行線的性質得出∠AEC=4(x°+y°),∠AFC=3(x°+y°),從而得出答案.
詳解:連接AC,設∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,
∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,
∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°)
∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),
∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),
∴4∠AFC=3∠AEC.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有下列說法:
①過一點有且只有一條直線與已知直線平行;
②無論k取何實數,多項式x2-ky2總能分解成兩個一次因式積的形式;
③ 若(t-3)3-2t=1,則t可以取的值有3個;
④關于x,y的方程組,將此方程組的兩個方程左右兩邊分別對應相加,
得到一個新的方程,其中當a每取一個值時,就有一個方程,而這些方程總有一個公共解,則這個公共解是,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.
(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;
(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;
(3)從火車站到河流怎樣走最近,畫圖并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點A逆時針旋轉30°后得到△AB′C′,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面的證明(在下面的括號內填上相應的結論或推理的依據):如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3,
求證:AD是∠BAC的平分線.
證明:∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°( )
∴AD∥EG( )
∴∠1=∠E( ) ∠2=∠3( )
∵∠E=∠3(已知)
∴( )=( )
∴AD是∠BAC的平分線( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長. 小萍同學靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設AD=x,利用勾股定理,建立關于x的方程模型,即可求出x的值.參考小萍的思路,探究并解答新問題:如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2 018次運動后,動點P的坐標是( )
A. (2018,0) B. (2018,1) C. (2018,2) D. (2017,0)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com