【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付給兩組費(fèi)用共3520元;若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付給兩組費(fèi)用共3480元,問(wèn):

(1)甲、乙兩組單獨(dú)工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨(dú)完成需要12天,乙組單獨(dú)完成需要24天,單獨(dú)請(qǐng)哪組,商店應(yīng)付費(fèi)用較少?

(3)若裝修完后,商店每天可盈利200元,你認(rèn)為如何安排施工有利用商店經(jīng)營(yíng)?說(shuō)說(shuō)你的理由.(可以直接用(1)(2)中的已知條件)

【答案】1)設(shè):甲組工作一天商店應(yīng)付x元,乙組工作一天商店付y元.

由題意得

解得

答:甲、乙兩組工作一天,商店各應(yīng)付300元和140元.

2)單獨(dú)請(qǐng)甲組需要的費(fèi)用:300×12=3600元.

單獨(dú)請(qǐng)乙組需要的費(fèi)用:24×140=3360元.

答:?jiǎn)为?dú)請(qǐng)乙組需要的費(fèi)用少.

3)請(qǐng)兩組同時(shí)裝修,理由:

甲單獨(dú)做,需費(fèi)用3600元,少贏利200×12=2400元,相當(dāng)于損失6000元;

乙單獨(dú)做,需費(fèi)用3360元,少贏利200×24=4800元,相當(dāng)于損失8160元;

甲乙合作,需費(fèi)用3520元,少贏利200×8=1600元,相當(dāng)于損失5120元;

可見(jiàn),甲乙合作損失費(fèi)用最少.

答:甲乙合作施工更有利于商店.

【解析】1)本題的等量關(guān)系是:甲做8天需要的費(fèi)用+乙作8天需要的費(fèi)用=3520元.甲組6天需付的費(fèi)用+乙做12天需付的費(fèi)用=3480元,由此可得出方程組求出解.

2)根據(jù)(1)得出的甲乙每工作一天,商店需付的費(fèi)用,然后分別計(jì)算出甲單獨(dú)做12天需要的費(fèi)用,乙單獨(dú)做24天需要的費(fèi)用,讓兩者進(jìn)行比較即可.

3)本題可將每種施工方法的施工費(fèi)加上施工期間商店損失的費(fèi)用,然后將不同方案計(jì)算出的結(jié)果進(jìn)行比較,損失最少的方案就是最有利商店的方案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A.內(nèi)錯(cuò)角相等,兩直線平行.  B. 兩直線平行,同旁內(nèi)角互補(bǔ).

C. 相等的角是對(duì)頂角. D. 等角的補(bǔ)角相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(
A.-3(x-1)=-3x-1
B.-3(x-1)=-3x+1
C.-3(x-1)=-3x-3
D.-3(x-1)=-3x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)的圖象M沿x軸翻折,把所得到的圖象向右平移2個(gè)單位長(zhǎng)度后再向上平移8個(gè)單位長(zhǎng)度,得到二次函數(shù)圖象N.

(1)求N的函數(shù)表達(dá)式;

(2)設(shè)點(diǎn)P(m,n)是以點(diǎn)C(1,4)為圓心、1為半徑的圓上一動(dòng)點(diǎn),二次函數(shù)的圖象M與x軸相交于兩點(diǎn)A、B,求的最大值;

(3)若一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點(diǎn)稱為整點(diǎn).求M與N所圍成封閉圖形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小龍?jiān)趯W(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的家庭收入情況.他從中隨機(jī)調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.

根據(jù)以上提供的信息,解答下列問(wèn)題:

(1)補(bǔ)全頻數(shù)分布表.

(2)補(bǔ)全頻數(shù)分布直方圖.

(3)繪制相應(yīng)的頻數(shù)分布折線圖.

(4)請(qǐng)你估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等腰直角三角形,AC=BC=2,D是邊AB上一動(dòng)點(diǎn)(A、B兩點(diǎn)除外),將△CAD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)角α得到△CEF,其中點(diǎn)E是點(diǎn)A的對(duì)應(yīng)點(diǎn),點(diǎn)F是點(diǎn)D的對(duì)應(yīng)點(diǎn).

(1)如圖1,當(dāng)α=90°時(shí),G是邊AB上一點(diǎn),且BG=AD,連接GF.求證:GF∥AC;

(2)如圖2,當(dāng)90°≤α≤180°時(shí),AE與DF相交于點(diǎn)M.

①當(dāng)點(diǎn)M與點(diǎn)C、D不重合時(shí),連接CM,求∠CMD的度數(shù);

②設(shè)D為邊AB的中點(diǎn),當(dāng)α從90°變化到180°時(shí),求點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)2015年屋頂綠化面積為2000平方米,計(jì)劃2017年屋頂綠化面積要達(dá)到2880平方米.若設(shè)屋頂綠化面積的年平均增長(zhǎng)率為x,則依題意所列方程正確的是( 。

A. 2000x2=2880 B. 2000(1+2x)=2880

C. 2000(1+x2=2880 D. 2000(1﹣x2=2880

查看答案和解析>>

同步練習(xí)冊(cè)答案