【題目】問題:如圖1,等腰直角三角形中,,點、點分別在邊上,且,顯然.
變式:若將圖1中的繞點逆時針旋轉,使得點在的內部,其它條件不變(如圖2),請你猜想線段與線段的關系,并加以證明.
拓展:若圖2中的、都為等邊三角形,其它條件不變(如圖3),則__________,直線與相交所夾的銳角為__________°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 C 為 Rt△ACB 與 Rt△DCE 的公共點,∠ACB=∠DCE=90°,連 接 AD、BE,過點 C 作 CF⊥AD 于點 F,延長 FC 交 BE 于點 G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為 度;
(3)將條形統(tǒng)計圖補充完整;
(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD.
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求AF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在這個直角三角形內有一個內接正方形,正方形的一邊FG在BC上,另兩個頂點E、H分別在邊AB、AC上.
(1)求BC邊上的高;
(2)求正方形EFGH的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB,
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續(xù)航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.
(1)求證:△MED∽△NFE;
(2)當EF=FC時,求k的值.
(3)當矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為1,∠A=60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,…,則四邊形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com