【題目】問題:如圖1,等腰直角三角形中,,點、點分別在邊上,且,顯然

變式:若將圖1中的繞點逆時針旋轉,使得點的內部,其它條件不變(如圖2),請你猜想線段與線段的關系,并加以證明.

拓展:若圖2中的都為等邊三角形,其它條件不變(如圖3),則__________,直線相交所夾的銳角為__________°.

【答案】變式:,證明詳見解析;拓展:

【解析】

變式:觀察圖形,根據(jù)已知條件,考慮等腰直角三角形的性質和旋轉的性質,推斷出,即可得到的數(shù)量關系,延長于點,根據(jù)角度等量代換,即可得到的位置關系.

拓展: 觀察圖形,根據(jù)已知條件,考慮等邊三角形的性質和旋轉的性質,推斷出,即可得到的數(shù)量關系,延長于點,根據(jù)角度等量代換,即可得到的位置關系

變式:答:

證明:如圖,

延長于點,

,

拓展:如圖,延長于點,

,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖, C RtACB RtDCE 的公共點ACB=DCE=90°,連 AD、BE,過點 C CFAD 于點 F,延長 FC BE 于點 G. AC=BC=25,CE=15, DC=20,的值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:

(1)本次抽查的樣本容量是 ;

(2)在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為 度;

(3)將條形統(tǒng)計圖補充完整;

(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能獨立思考的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB90°,EAB的中點,

1)求證:AC2ABAD

2)求證:CEAD

3)若AD4,AB6,求AF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,AB20cm,AC15cm,在這個直角三角形內有一個內接正方形,正方形的一邊FGBC上,另兩個頂點E、H分別在邊AB、AC上.

1)求BC邊上的高;

2)求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線yax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC3OB,

1)求拋物線的解析式;

2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續(xù)航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數(shù)據(jù):1.41,1.732.45

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,點E是線段AC上的一個動點且k0k1),點F在線段BC上,且DEFH為矩形;過點EMNBC,分別交AD,BC于點MN

1)求證:△MED∽△NFE;

2)當EFFC時,求k的值.

3)當矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長為1,∠A60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,,則四邊形A2019B2019C2019D2019的面積是_____

查看答案和解析>>

同步練習冊答案