【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DE∥BC,下面是王華同學(xué)的推導(dǎo)過(guò)程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.
證明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4 (_________________),
∴∠2﹢_____﹦180°.
∴EH∥AB(___________________________________).
∴∠B﹦∠EHC(________________________________).
∵∠3﹦∠B(已知)
∴ ∠3﹦∠EHC(____________________).
∴ DE∥BC(__________________________________).
【答案】對(duì)頂角相等;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行
【解析】試題分析:根據(jù)對(duì)頂角相等,得出∠1=∠4,根據(jù)等量代換可知∠2+∠4=180°,根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行,得出EH∥AB,再由兩直線平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,由等量代換可知∠3=∠EHC,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,即可得出DE∥BC.
試題解析:∠1﹦∠4 ( 對(duì)頂角相等 ),
∴∠2﹢∠4﹦180°.
∴EH∥AB ( 同旁內(nèi)角互補(bǔ),兩直線平行)
∴∠B﹦∠EHC(兩直線平行,同位角相等 ).
∴ ∠3﹦∠EHC( 等量代換 ).
∴ DE∥BC(內(nèi)錯(cuò)角相等,兩直線平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A-B-C-D…的規(guī)律繞在ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( )
A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以O為圓心的兩個(gè)同心圓,大圓半徑為5,小圓半徑為,點(diǎn)P為大圓上的一點(diǎn),PC、PB切小圓于點(diǎn)A、點(diǎn)B,交大圓于C、D兩點(diǎn),點(diǎn)E為弦CD上任一點(diǎn),則AE+OE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=2x2+3上有兩點(diǎn)A(x1 , y1)、B(x2 , y2),且x1≠x2 , y1=y2 , 當(dāng)x=x1+x2時(shí),y= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,O為直線AB上一點(diǎn),OD平分∠AOC,∠DOE=90°.
(1)∠AOD的余角是 ______ ,∠COD的余角是 ______
(2)OE是∠BOC的平分線嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等腰三角形,其邊長(zhǎng)為3和7,△DEF≌△ABC,則△DEF的周長(zhǎng)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com