【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).

(1)求拋物線的解析式;

(2)猜想EDB的形狀并加以證明;

(3)點M在對稱軸右側(cè)的拋物線上,點Nx軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

【答案】(1)y=﹣x2+3x;(2)EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).

【解析】試題分析:(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數(shù)法可求得拋物線解析式;

(2)由B、D、E的坐標可分別求得DE、BDBE的長,再利用勾股定理的逆定理可進行判斷;

(3)由B、E的坐標可先求得直線BE的解析式,則可求得F點的坐標,當AF為邊時,則有FMANFM=AN,則可求得M點的縱坐標,代入拋物線解析式可求得M點坐標;當AF為對角線時,由AF的坐標可求得平行四邊形的對稱中心,可設出M點坐標,則可表示出N點坐標,再由N點在x軸上可得到關于M點坐標的方程,可求得M點坐標.

解:(1)在矩形OABC中,OA=4,OC=3,

A(4,0),C(0,3),

∵拋物線經(jīng)過O、A兩點,

∴拋物線頂點坐標為(2,3),

∴可設拋物線解析式為y=a(x﹣2)2+3,

A點坐標代入可得0=a(4﹣2)2+3,解得a=﹣,

∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;

(2)EDB為等腰直角三角形.

證明:

由(1)可知B(4,3),且D(3,0),E(0,1),

DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,

DE2+BD2=BE2,且DE=BD,

∴△EDB為等腰直角三角形;

(3)存在.理由如下:

設直線BE解析式為y=kx+b,

B、E坐標代入可得,解得

∴直線BE解析式為y=x+1,

x=2時,y=2,

F(2,2),

①當AF為平行四邊形的一邊時,則Mx軸的距離與Fx軸的距離相等,即Mx軸的距離為2,

∴點M的縱坐標為2或﹣2,

y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,

∵點M在拋物線對稱軸右側(cè),

x>2,

x=,

M點坐標為(,2);

y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,

∵點M在拋物線對稱軸右側(cè),

x>2,

x=,

M點坐標為(,﹣2);

②當AF為平行四邊形的對角線時,

A(4,0),F(xiàn)(2,2),

∴線段AF的中點為(3,1),即平行四邊形的對稱中心為(3,1),

M(t,﹣t2+3t),N(x,0),

則﹣t2+3t=2,解得t=

∵點M在拋物線對稱軸右側(cè),

x>2,

t>2,

t=,

M點坐標為(,2);

綜上可知存在滿足條件的點M,其坐標為(,2)或(,﹣2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列4個命題:其中真命題是( )

(1)三角形的外角和是180°;(2)三角形的三個內(nèi)角中至少有兩個銳角;

(3)如果<0,那么y<0;(4)直線a、b、c,如果ab、bc,那么ac

A. (1)(2) B. (2)(3) C. (2)(4) D. (3)(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D、E、F分別在邊AB、BC、CA上,且DECA,DFBA.

下列四種說法:①四邊形AEDF是平行四邊形;②如果BAC=90°,那么四邊形AEDF是矩形;③如果AD平分BAC,那么四邊形AEDF是菱形;④如果ADBC且AB=AC,那么四邊形AEDF是菱形.

其中,正確的有( ) 個.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,彈性小球從P(20)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2,第n次碰到正方形的邊時的點為Pn,則P2020的坐標是( 。

A.(5,3)B.(3,5)C.(02)D.(2,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關系如圖所示

1)根據(jù)圖象信息,當t   分鐘時甲乙兩人相遇,甲的速度為   /分鐘;

2)求出線段AB所表示的函數(shù)表達式

3)甲、乙兩人何時相距400米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】齊齊哈爾市教育局想知道某校學生對扎龍自然保護區(qū)的了解程度,在該校隨機抽取了部分學生進行問卷,問卷有以下四個選項:A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學生必選且只能選擇一項).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次被抽取的學生共有_______名;

2)請補全條形圖;

3)扇形圖中的選項“C.了解較少”部分所占扇形的圓心角的大小為_______°;

4)若該校共有名學生,請你根據(jù)上述調(diào)查結(jié)果估計該校對于扎龍自然保護區(qū)“十分了解”和“了解較多”的學生共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位運動員在一段2000米長的筆直公路上進行跑步比賽,比賽開始時甲在起點,乙在甲的前面200米,他們同時同向出發(fā)勻速前進,甲的速度是8米/秒,乙的速度是6米/秒,先到終點者在終點原地等待.設甲、乙兩人之間的距離是y米,比賽時間是x秒,當兩人都到達終點計時結(jié)束,整個過程中y與之間的函數(shù)圖象是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB為定點,定直線l//ABPl上一動點.點MN分別為PA,PB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MNAB之間的距離;

⑤∠APB的大。

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx2x軸交于AB兩點,與y軸交于C點,且A1,0).

(1)求拋物線的解析式;

(2)判斷△ABC的形狀,證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案