【題目】如圖,已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸交于A、C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,且OAOB

1)求線段AC的長(zhǎng)度;

2)若點(diǎn)P在拋物線上,點(diǎn)P位于第二象限,過(guò)PPQAB,垂足為Q.已知PQ,求點(diǎn)P的坐標(biāo).

【答案】1)線段AC的長(zhǎng)是4;(2)點(diǎn)P的坐標(biāo)為(﹣23)或(﹣1,4).

【解析】

1)根據(jù)題意可以求得點(diǎn)B的坐標(biāo),從而可得到點(diǎn)A的坐標(biāo),進(jìn)而求得函數(shù)解析式,再令y=0,即可得到點(diǎn)C的坐標(biāo),從而可以得到線段AC的長(zhǎng);
2)根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)可以得到直線AB的函數(shù)解析式,然后根據(jù)二次函數(shù)的性質(zhì)和平行線的性質(zhì),可以求得點(diǎn)P的坐標(biāo),本題得以解決.

1)∵二次函數(shù)y=﹣x2+bx+3的圖象與y軸交于點(diǎn)B,且OAOB,

∴點(diǎn)B的坐標(biāo)為(0,3),∴OBOA3,

∴點(diǎn)A的坐標(biāo)為(﹣3,0),∴0=﹣(﹣32+b×(﹣3+3,解得,b=﹣2,

y=﹣x22x+3=﹣(x+3)(x1),

∴當(dāng)y0時(shí),x1=﹣3,x21

∴點(diǎn)C的坐標(biāo)為(1,0),∴AC1﹣(﹣3)=4,

即線段AC的長(zhǎng)是4;

2)∵點(diǎn)A(﹣3,0),點(diǎn)B3,0),

∴直線AB的函數(shù)解析式為yx+3,

過(guò)點(diǎn)PPDy軸交直線AB于點(diǎn)D,

設(shè)點(diǎn)P的坐標(biāo)為(m,﹣m22m+3),則點(diǎn)D的坐標(biāo)為(m,m+3),

PD=﹣m22m+3﹣(m+3)=﹣m23m

PDy軸,∠ABO45°,

∴∠PDQ=∠ABO45°,

又∵PQAB,PQ

∴△PDQ是等腰直角三角形,

PD2,∴﹣m23m2,解得,m1=﹣1,m2=﹣2,

當(dāng)m=﹣1時(shí),﹣m22m+34,

當(dāng)m=﹣2時(shí),﹣m22m+33,

∴點(diǎn)P的坐標(biāo)為(﹣23)或(﹣1,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BEBF三等分∠ABC,CECF三等分∠ACB,∠A60°,求∠BEC和∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+c(a≠0)y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B(4,0),拋物線的對(duì)稱軸交x軸于點(diǎn)DCEAB,并與拋物線的對(duì)稱軸交于點(diǎn)E現(xiàn)有下列結(jié)論:①b24a0;②b0;③5a+b0;④AD+CE4.其中正確結(jié)論個(gè)數(shù)為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.

(1)求證:△ABD≌△EBD;

(2)過(guò)點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,角平分線交BCO,以OB為半徑作⊙O.(1)判定直線AC是否是⊙O的切線,并說(shuō)明理由;

(2)連接AO交⊙O于點(diǎn)E,其延長(zhǎng)線交⊙O于點(diǎn)D,求的值;

(3)在(2)的條件下,設(shè)的半徑為3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù),當(dāng)時(shí),函數(shù)有最大值5.

(1)求此二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn);

(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個(gè)交點(diǎn),從左到右,四個(gè)交點(diǎn)依次記為,當(dāng)以為直徑的圓與軸相切時(shí),求的值.

(3)若點(diǎn)(2)中翻折得到的拋物線弧部分上任意一點(diǎn),若關(guān)于m的一元二次方程 恒有實(shí)數(shù)根時(shí),求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.

(1)求證:k取任何實(shí)數(shù)值,方程總有實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D,EABC的邊BC上,連接AD,AE. AB=AC;②AD=AE;③BD=CE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,構(gòu)成三個(gè)命題:(1)①②③;(2)①③②;(3)②③.

1)以上三個(gè)命題是真命題的為(直接答題號(hào)) ;

2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案