【題目】 (2016湖北鄂州第14題)如圖,已知直線 與x軸、y軸相交于P、Q兩點(diǎn),與y=的圖像相交于A(-2,m)、B(1,n)兩點(diǎn),連接OA、OB. 給出下列結(jié)論: ①k1k2<0;②m+n=0; ③S△AOP= S△BOQ;④不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結(jié)論的序號(hào)是 .
【答案】②③④.
【解析】
試題分析:①由直線 的圖像在二、四象限,知k1<0;y=的圖像在二、四象限,知k2<0;因此k1k2>0,所以①錯(cuò)誤;②A,B兩點(diǎn)在y=的圖像上,故將A(-2,m)、B(1,n)代入,得m=,n= k2;從而得出m+n=0,故②正確;③令x=0,則y=b,所以Q(0,b),則S△BOQ=×1×|b|= -b;將A(-2,m)、B(1,n)分別代入,解得k1=,所以y=x+b;令y=0,則x=-b,所以P(-b,0),則S△AOP=×|-2|×|-b|= -b;所以S△AOP= S△BOQ,故③正確;④由圖像知,在A點(diǎn)左邊,不等式k1x+b的圖像在的圖像的上邊,故滿足k1x+b>;在Q點(diǎn)與A點(diǎn)之間,不等式k1x+b的圖像在的圖像的上邊,故滿足k1x+b>;因此不等式k1x+b>的解集是x<-2或0<x<1. 故④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.求(﹣2)⊕3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)4c>b2時(shí),方程x2﹣bx+c=0的根的情況是( )
A.有兩個(gè)不等實(shí)數(shù)根
B.有兩個(gè)相等實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根
D.不能確定有無(wú)實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (2016湖南衡陽(yáng)第12題)如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以線段AB的兩個(gè)端點(diǎn)為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于M、N兩點(diǎn),連接MN , 交AB于點(diǎn)D、C是直線MN上任意一點(diǎn),連接CA、CB , 過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E , DF⊥BC于點(diǎn)F .
(1)求證:△AED≌△BFD;
(2)若AB=2,當(dāng)CD的值為多少時(shí),四邊形DECF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=(x+1)2+2上兩點(diǎn)(0,a)、(﹣1,b),則a、b的大小關(guān)系是( 。
A.a>bB.b>a
C.a=bD.無(wú)法比較大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程x2+bx-a=0有一個(gè)根是-a(a≠0),則下列代數(shù)式的值恒為常數(shù)的是( )
A.b-aB.a-bC.a+bD.ab
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com