【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y=kx1(k>0)的圖象與BC邊交于點E.當(dāng)F為AB的中點時,求該函數(shù)的解析式.

【答案】解:在矩形OABC中,AB=OC=2,

∵點F是AB的中點,

∴AF= AB= ×2=1,

又∵OA=3,

∴點F的坐標(biāo)為(3,1),

∴k31=1,

解得k=3,

所以,反比例函數(shù)解析式為y=


【解析】根據(jù)矩形的性質(zhì)求出AB的長,點F是AB的中點,求出AF的長,根據(jù)OA的長,可得到點F的坐標(biāo),用待定系數(shù)法求出此函數(shù)解析式。
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,的面積為8,,,點的坐標(biāo)是

1)求三個頂點、、的坐標(biāo);

2)若點坐標(biāo)為,連接,,求的面積;

3)是否存在點,使的面積等于的面積?如果存在,請求出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

13x12x;

212x1)=﹣3x;

31

4 [2x+]5x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師在黑板上寫了一道題:如圖1,線段AB=CD,AB與CD相交于點O,且∠AOC=60°,試比較AC+BD與AB的大小.小聰思考片刻就想出來了,他說將AB平移到CE位置,如圖2,連接BE,DE,就可以比較AC+BD與AB的大小了,你知道他是怎樣比較的嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級一班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”、“戲劇”、“散文”、“其他”
四個類別,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:

類別

頻數(shù)(人數(shù))

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計

m

1


(1)計算m=
(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請用畫樹狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方形OABC,O為平面直角坐標(biāo)系的原點,OA5,OC3,點B在第三象限.

1)求點B的坐標(biāo);

2)如圖,若過點B的直線BP與長方形OABC的邊交于點P,且將長方形OABC的面積分為14兩部分,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個不同的一次函數(shù)y=ax+by=bx+a的圖象在同一平面直角坐標(biāo)系內(nèi)的位置可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,∠AOB=90°,∠BOC=30°OD、OE分別是∠AOC和∠BOC的平分線.

(1)求∠COD的度數(shù);

(2)求∠DOE的度數(shù);

(3)若把本題的條件改成∠AOB=α,∠BOC=β,那么∠DOE的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,第一次將變換成,第二次將變換成,第三次將變換成,已知:、、、.若將進(jìn)行了,且為整數(shù))次變換,得到,推測的坐標(biāo)是_____,點的坐標(biāo)是_______

查看答案和解析>>

同步練習(xí)冊答案