【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2mA處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點的水平距離為6m時,達到最高2.6m,球網(wǎng)與O點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )

A. 球不會過網(wǎng) B. 球會過球網(wǎng)但不會出界

C. 球會過球網(wǎng)并會出界 D. 無法確定

【答案】C

【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9x=18時的函數(shù)值,再分別與2.43、0比較大小可得.

詳解:根據(jù)題意,將點A(0,2)代入

得:36a+2.6=2,

解得:

yx的關(guān)系式為

x=9,

∴球能過球網(wǎng),

x=18,

∴球會出界.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖給出下列五個等量關(guān)系

ABAC;②BDCD;③∠BAD=∠CAD;④∠B=∠C90°;⑤∠BDA=∠CDA

請你以其中兩個為條件,另三個中的一個為結(jié)論,寫出一個正確命題(只需寫出一種情況),并加以證明.

解:我選作為題設(shè)的等量關(guān)系是:   、   ;

作為正確結(jié)論的等量關(guān)系是   

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)x(x﹣1)=1﹣x

(2)x2+2x﹣35=0

(3)4x2﹣3=12x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[m﹣1,1+m,﹣2m]的函數(shù)的一些結(jié)論:①當m=3時,函數(shù)圖象的頂點坐標是(﹣1,﹣8);②當m>1時,函數(shù)圖象截x軸所得的線段長度大于3;③當m<0時,函數(shù)在x>時,yx的增大而減;④不論m取何值,函數(shù)圖象經(jīng)過兩個定點.其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,二次函數(shù)y=﹣2x2+4x+6的圖象與x軸的正半軸交于點A,與y軸交于點C.

(1)AC的長;

(2)求頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、C、P四點均在邊長為1的小正方形網(wǎng)格格點上

(1)判斷PBAABC是否相似并說明理由;

(2)BAC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊中,點,分別在邊,上.

1)如圖,若,以為邊作等邊于點,連接

求證:①

平分

2)如圖,若,作,的延長線于點,求證:

查看答案和解析>>

同步練習冊答案