【題目】如圖,等腰△ABC內(nèi)接于半徑為5的⊙O,AB=AC,tan∠ABC=.求BC的長.
【答案】BC=6.
【解析】
連接AO,交BC于點(diǎn)E,連接BO,求出,根據(jù)垂徑定理得出OA⊥BC,BC=2BE,設(shè)AE=x,則BE=3x,OE=5﹣x,根據(jù)勾股定理得出方程(3x)2+(5﹣x)2=52,求出方程的解即可.
連接AO,交BC于點(diǎn)E,連接BO,
∵AB=AC,
∴,
又∵OA是半徑,
∴OA⊥BC,BC=2BE,
在Rt△ABE中,∵tan∠ABC=,
∴,
設(shè)AE=x,則BE=3x,OE=5﹣x,
在Rt△BEO中,BE2+OE2=OB2,
∴(3x)2+(5﹣x)2=52,
解得:x1=0(舍去),x2=1,
∴BE=3x=3,
∴BC=2BE=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E是BC上的一點(diǎn),連接AE,過B點(diǎn)作BH⊥AE,垂足為點(diǎn)H,延長BH交CD于點(diǎn)F,連接AF.
(1)求證AE=BF;
(2)若正方形的邊長是5,BE=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且、,點(diǎn)D是第四象限的拋物線上的一個動點(diǎn),過點(diǎn)D作直線軸,垂足為點(diǎn)F,交線段BC于點(diǎn)E
求拋物線的解析式及點(diǎn)A的坐標(biāo);
當(dāng)時,求點(diǎn)D的坐標(biāo);
在y軸上是否存在P點(diǎn),使得是以AC為腰的等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),P是AB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( )
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( )
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上, ΔAEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE,其中結(jié)論正確的個數(shù)為( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點(diǎn).
(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);
(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;
(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若△POB 的面積為 1,請直接寫出點(diǎn) P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=8.
(1)如圖①若E從B到C運(yùn)動,F從D到A運(yùn)動且BE=2DF,
( i)當(dāng)DF為何值時四邊形ECDF是矩形.
( ii)當(dāng)DF為何值時EF=2.
(2)如圖②E在BC上,BE=3,F在CD上,將△ECF沿EF折疊,當(dāng)C點(diǎn)恰好落在AD邊上的G處時,求折痕EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com