【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),PAB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( 。

A. 3 B. 3 C. 4 D. 4

【答案】D

【解析】連結(jié)FD,DAB的中點(diǎn),如圖ABC為等腰直角三角形,AB=10,PB=1,AC=BC=A=45°∵點(diǎn)D、EF分別是ABC三邊的中點(diǎn),AB=10PB=1,AD=BD= 5,DP=DBPB=51=4EF、DFABC的中位線(xiàn)EFAB,EF= AB=5,DF= BC=EFP=FPD,∴∠FDA=45°,==∴∠DFP+DPF=45°PQF為等腰直角三角形,∴∠PFE+EFQ=45°,FP=PQ∴∠DFP=EFQPFQ是等腰直角三角形,= ,= ,∴△FDP∽△FEQ,=,QE= DP=故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為3,若在數(shù)軸上存在點(diǎn)P,使得AP+BP=m,則稱(chēng)點(diǎn)P為點(diǎn)AB“m級(jí)精致點(diǎn),例如,原點(diǎn)O表示的數(shù)為0,則AO+BO=3+3=6,則稱(chēng)點(diǎn)O為點(diǎn)A和點(diǎn)B“6級(jí)精致點(diǎn),根據(jù)上述規(guī)定,解答下列問(wèn)題:

1)若點(diǎn)C軸在數(shù)軸上表示的數(shù)為﹣5,點(diǎn)C為點(diǎn)A和點(diǎn)B“m級(jí)精致點(diǎn),則m=

2)若點(diǎn)D是數(shù)軸上點(diǎn)A和點(diǎn)B“8級(jí)精致點(diǎn),求點(diǎn)D表示的數(shù);

3)如圖,數(shù)軸上點(diǎn)E和點(diǎn)F分別表示的數(shù)是﹣24,若點(diǎn)G是點(diǎn)E和點(diǎn)F“m級(jí)精致點(diǎn),且滿(mǎn)足GE=3GF,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地要建造一個(gè)圓形噴水池,在水池中央垂直于地面安裝一個(gè)柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線(xiàn)路徑落下.在過(guò)OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達(dá)到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD邊長(zhǎng)為3,點(diǎn)EAB邊上且BE=1,點(diǎn)P,Q分別是邊BC,CD的動(dòng)點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長(zhǎng)取最小值時(shí),四邊形AEPQ的面積是( 。

A. 3 B. 5 C. 4 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知單位長(zhǎng)度為1的方格中有三角形ABC.

1)請(qǐng)畫(huà)出三角形ABC向上平移3格再向右平移2格后所得到的三角形A′B′C′;

2)請(qǐng)以點(diǎn)A為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系(在圖中畫(huà)出),然后寫(xiě)出點(diǎn)B,B′的坐標(biāo);

3)求出三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①若a,b互為相反數(shù),則=-1;②若ab0,ab0,則|a2b|=-a2b;③若多項(xiàng)式ax3bx1的值為5,則多項(xiàng)式-ax3bx1的值為-3;④若甲班有50名學(xué)生,平均分是a分,乙班有40名學(xué)生,平均分是b分,則兩班的平均分為.其中正確的為____(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)證明:無(wú)論m為何值方程都有兩個(gè)實(shí)數(shù)根;

(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于26?若存在,求出滿(mǎn)足條件的正數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;

(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線(xiàn)段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)28、29.431.9、2728.8、34.1、29.4的中位數(shù)、眾數(shù)、極差分別是( 。

A. 、、B. 、、

C. 27、29、D. 28、

查看答案和解析>>

同步練習(xí)冊(cè)答案