【題目】如圖,某同學在大樓AD的觀光電梯中的E點測得大樓BC樓底C點的俯角為45°,此時該同學距地面高度AE20米,電梯再上升5米到達D點,此時測得大樓BC樓頂B點的仰角為37°,求大樓的高度BC.(參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75).

【答案】解:過點E、D分別作BC的垂線,交BC于點FG

Rt△EFC中,因為FCAE20∠FEC45°

所以EF20 ………2

Rt△DBG中,DGEF20∠BDG37°

因為tan∠BDG≈0.75 ………4

所以BG≈DG×0.7520×0.7515………5



GFDE5所以BCBGGFFC1552040

答:大樓BC的高度是40米. ………6

【解析】

首先過點E、D分別作BC的垂線,交BC于點F、G,得兩個直角三角形△EFC和△BDG,由已知大樓BC樓底C點的俯角為45°得出EF=FC=AE=20,DG=EF=20,再由直角三角形BDG,可求出BG,GF=DE=5,CO從而求出大樓的高度BC.

過點E、D分別作BC的垂線,交BC于點F、G.

Rt△EFC中,因為FC=AE=20,∠FEC=45°

所以EF=20

Rt△DBG中,DG=EF=20,∠BDG=37°

因為tan∠BDG=≈0.75

所以BG≈DG×0.75=20×0.75=15

GF=DE=5

所以BC=BG+GF+FC=15+5+20=40

答:大樓BC的高度是40.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》記載今有邑方不知大小,各中開門.出北門三十步有木,出西門七百五十步見木.問邑方有幾何?意思是:如圖,點M、點N分別是正方形ABCD的邊ADAB的中點,MEADNFAB,EF過點A,且ME=30步,NF=750步,則正方形的邊長為( 。

A. 150B. 200C. 250D. 300

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知各頂點的坐標分別為,

1)畫出以點B為旋轉(zhuǎn)中心,按順時針方向旋轉(zhuǎn)后得到的;

2)將先向右平移5個單位長度,再向上平移3個單位長度,得到

①在圖中畫出,并寫出點A的對應(yīng)點的坐標;

②如果將看成是由經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中,裝有2個紅球,1個白球,1個黃球,這些球除顏色外都相同.求下列事件的概率:

(1)攪勻后從中任意摸出1個球,恰好是紅球;

(2)攪勻后從中任意摸出2個球,2個都是紅球.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線軸于,交軸于.

1)直接寫出的值為______.

2)如圖2,軸負半軸上一點,過點的直線經(jīng)過的中點,點軸上一動點,過軸分別交直線、,且,求的值.

3)如圖3,已知點,點為直線右側(cè)一點,且滿足,求點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:

(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:_________;

(2)仔細觀察,在圖2中“8字形”的個數(shù)_________個;

(3)在圖2中,若∠D=40°,∠B=36°,試求∠P的度數(shù);

(4)如果圖2中∠D和∠B為任意角,其他條件不變,試問∠P與∠D,∠B之間存在著怎樣的數(shù)量關(guān)系(直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七年級某班級為了促進同學養(yǎng)成良好的學習習慣,每天都對同學進行學規(guī)管理記分.如下是小李同學第8周學規(guī)得分(規(guī)定:加分為“+”,扣分為“﹣”)

1)第8周小李學規(guī)得分總計是多少?

2)根據(jù)班規(guī),一學期里班級還會將同學每周的學規(guī)得分進行累加.已知小李同學第7周末學規(guī)累加分數(shù)為98分,若他在第9周末學規(guī)累加分數(shù)達到105分,則他第9周的學規(guī)得分總計是多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,過點作直線,將繞點順時針得到(點,的對應(yīng)點分別為,),射線,分別交直線于點.

(1)如圖1,當重合時,求的度數(shù);

(2)如圖2,設(shè)的交點為,當的中點時,求線段的長;

(3)在旋轉(zhuǎn)過程時,當點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:如圖,射線上方,射線下方,,),分別是 的平分線.

操作發(fā)現(xiàn):(1)當時,求的度數(shù);

2)繼續(xù)探究,當固定不變,把擴大為時,求的度數(shù);

探索發(fā)現(xiàn):(3)在完成(1)(2)時,小亮發(fā)現(xiàn)之間存在一個固定的數(shù)量關(guān)系.你認為小亮說的對嗎?請說明理由.

查看答案和解析>>

同步練習冊答案