【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個(gè)∠COD,使∠COD=90°.
(1)如圖1,過(guò)點(diǎn)O作射線OE,使OE是∠AOD的角平分線,求證:∠BOD=2∠COE;
(2)如圖2,過(guò)點(diǎn)O作射線OE,使OC是∠AOE的角平分線,另作射線OF,使OF是∠COD的平分線,若∠EOC=3∠EOF,求∠AOE的度數(shù).
【答案】(1)見(jiàn)解析;(2)∠AOE=67.5°
【解析】
(1)根據(jù)角的和差定義證明即可.
(2)設(shè)∠EOF=x,構(gòu)建方程求出x即可解決問(wèn)題.
(1)證明:∵OE是∠AOD的平分線,
∴∠AOD=2∠EOD,
∴∠BOD=180°﹣∠AOD
=180°﹣2∠DOE
=2(90°﹣∠DOE)=2∠COE.
(2)解:設(shè)∠EOF=x,則∠EOC=3x,
∴∠COF=∠EOC+∠EOF=4x,
∵OF平分∠COD,∠COD=90°,
∴∠COF=45°,即4x=45°,
∴x=11.25°,
∵OC平分∠AOE,
∴∠AOE=2∠AOC=6x=67.5°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);
(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長(zhǎng)度,得曲線C2,則C1平移至C2處所掃過(guò)的面積是_________.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB,點(diǎn)C在直線AB上,D為線段BC的中點(diǎn).
(1)若AB=8 ,AC=2,求線段CD的長(zhǎng).
(2)若點(diǎn)E是線段AC的中點(diǎn),直接寫(xiě)出線段DE和AB的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,,頂點(diǎn)為.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍;
(3)探索:線段上是否存在點(diǎn),使為直角三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)畫(huà)出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海上有一小島,為了測(cè)量小島兩端A、B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖所示,已知B點(diǎn)是CD的中點(diǎn),E是BA延長(zhǎng)線上的一點(diǎn),測(cè)得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=.
(1)求小島兩端A、B的距離;
(2)過(guò)點(diǎn)C作CF⊥AB交AB的延長(zhǎng)線于點(diǎn)F,求sin∠BCF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于O,OE⊥CD,且∠BOD的度數(shù)是∠AOD的5倍.
求:(1)∠AOD、∠BOD的度數(shù);(2)∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=-x-1與反比例函數(shù)(x<0)的圖象交于點(diǎn)A,與x軸相交于點(diǎn)B,過(guò)點(diǎn)B作x軸垂線交雙曲線于點(diǎn)C,若AB=AC,則k的值為( )
A.-2 B.-4 C.-6 D.-8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com