【題目】如圖,直線AB、CD相交于O,OE⊥CD,且∠BOD的度數(shù)是∠AOD的5倍.
求:(1)∠AOD、∠BOD的度數(shù);(2)∠BOE的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E.求證:
(1)△ADC≌△CEB;
(2)DE=AD+BE.
(3)當直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,DE、AD、BE又怎樣的關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點O為直線AB上一點,在直線AB上側(cè)任作一個∠COD,使∠COD=90°.
(1)如圖1,過點O作射線OE,使OE是∠AOD的角平分線,求證:∠BOD=2∠COE;
(2)如圖2,過點O作射線OE,使OC是∠AOE的角平分線,另作射線OF,使OF是∠COD的平分線,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線y=x+b與雙曲線y=(x<0)交于點A(﹣1,﹣5),并分別與x軸、y軸交于點C、B.
(1)求出b、m的值;
(2)點D在x軸的正半軸上,若以點D、C、B組成的三角形與△OAB相似,試求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的中線BD,CE交于點O,F,G分別是BO,CO的中點.
(1)填空:四邊形DEFG是 四邊形.
(2)若四邊形DEFG是矩形,求證:AB=AC.
(3)若四邊形DEFG是邊長為2的正方形,試求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四川省第十三屆運動會將于2018年8月在我市舉行,某校組織了主題“我是運動會志愿者”的電子小報作品征集活動,先從中隨機抽取了部分作品,按A,B,C,D四個等級評分,然后根據(jù)統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)求此次抽取的作品中等級為B的作品數(shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖為D的扇形圓心角的度數(shù);
(3)該校計劃從抽取的這些作品中選取部分作品參加市區(qū)的作品展.已知其中所選的到市區(qū)參展的A作品比B作品少4份,且A、B兩類作品數(shù)量和正好是本次抽取的四個等級作品數(shù)量的,求選取到市區(qū)參展的B類作品有多少份.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一塊長、寬、高分別為6cm、4cm、3cm的長方體木塊,一只螞蟻要從長方體木塊的一個頂點A處,沿著長方體的表面到長方體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是( )
A. cm B. cm C. cm D. 9cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機就可隨時用的共享單車。某運營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準備對收費作如下調(diào)整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費。具體收費標準如下:
同時,就此收費方案隨機調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
(1)寫出a、b的值。
(2)已知該校有5100名師生,且A品牌共享單車投放該校一天的費用為5800元。試估計:收費調(diào)整后,此運營商在該校投放A品牌共享單車能否獲利?說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)市場調(diào)查,發(fā)現(xiàn)進價為40元的某童裝每月的銷售量y(件)與售價x(元)滿足一次函數(shù)關(guān)系,且相關(guān)信息如下:
售價x(元) | 60 | 70 | 80 | 90 | …… |
銷售量y(件) | 280 | 260 | 240 | 220 | …… |
(1)求這個一次函數(shù)關(guān)系式;
(2)售價為多少元時,當月的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com