【題目】如圖,PA是⊙O的切線,A為切點,AC是⊙O的直徑,AB是弦,PA∥BC交AB于點D.
(1)求證:PB是⊙O的切線.
(2)當BC=2 ,cos∠AOD= 時,求PB的長.
【答案】
(1)證明:∵PA為⊙O的切線,
∴∠PAO=90°,
∵AC是⊙O的直徑,
∴∠ABC=90°,
∵PO∥BC,
∴∠ADO=∠ABC=90°,即PO⊥AB,
∴AD=BD,
∴PA=PB,
在△APO和△BPO中,
,
∴△APO≌△BPO(SSS),
∴∠PAO=∠PBO=90°,
∴∠PBO=90°,
∴PB是⊙O的切線.
(2)∵PO∥BC,
∴∠ACB=∠AOD,
∴cos∠ACB=cos∠AOD= ,
∴ = ,
∴AC=2 ÷ =8,
∴OA= AC=4,
∵cos∠AOP= = ,
∴OP=8 ,
∴AP= =4 ,
∵PA=PB,
∴PB=4 .
【解析】(1)證PB是⊙O的切線,需要證∠PBO=90°,可利用SSS證明△APO≌△BPO得出∠PAO=∠PBO;
(2)利用平行線的性質和已知可得cos∠ACB=cos∠AOD,利用三角函數的定義可求得AC的長,在Rt△AOP中利用三角函數可求出OP的長,在Rt△AOP中利用勾股定理求得AP,由切線長定理可得PB的長.
【考點精析】通過靈活運用解直角三角形,掌握解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)即可以解答此題.
科目:初中數學 來源: 題型:
【題目】已知關于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實數時,方程總有實數根;
(2)當拋物線y=kx2+(2k+1)x+2圖象與x軸兩個交點的橫坐標均為整數,且k為正整數時,若P(a,y1),Q(1,y2)是此拋物線上的兩點,且y1>y2 , 請結合函數圖象確定實數a的取值范圍;
(3)已知拋物線y=kx2+(2k+1)x+2恒過定點,求出定點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級甲、乙兩班分別選5名同學參加“學雷鋒讀書活動”演講比賽,其預賽成績如圖:
(1)根據上圖求出下表所缺數據;
平均數 | 中位數 | 眾數 | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8 | 10 | 1.6 |
(2)根據上表中的平均數、中位數和方差你認為哪班的成績較好?并說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】看圖填空,并在括號內說明理由:
∵BD平分∠ABC(已知)
∴__________=__________(__________)
又∠1=∠D(已知)
∴__________=__________(__________)
∴__________∥__________(__________)
∴∠ABC+__________=180°(__________)
又∠ABC=55°(已知)
∴∠BCD=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QO,設PD=x,△PQD的面積為y,則能表示y與x函數關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P是射線AC上任意一點 (不與A、D、C三點重合),過點P作PQ⊥AB,垂足為Q,交線段BD于E.
(1)如圖①,當點P在線段AC上時,說明∠PDE=∠PED.
(2)畫出∠CPQ的角平分線交線段AB于點F,則PF與BD有怎樣的位置關系?畫出圖形并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的內角∠DCB與外角∠ABE的平分線相交于點F.
(1)若BF∥CD,∠ABC=80°,求∠DCB的度數;
(2)已知四邊形ABCD中,∠A=105,∠D=125,求∠F的度數;
(3)猜想∠F、∠A、∠D之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為建設京西綠色走廊,改善永定河水質,某治污公司決定購買10臺污水處理設備.現有A、B兩種型號的設備,其中每臺的價格與月處理污水量如下表:
經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元.
(1)求x、y的值;
(2)如果治污公司購買污水處理設備的資金不超過105萬元,求該治污公司有哪幾種購買方案;
(3)在(2)的條件下,如果月處理污水量不低于2040噸,為了節(jié)約資金,請為該公司設計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com