【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點(diǎn)F,連接CF,則下列結(jié)論:①BF=AC; ②∠FCD=45°; ③若BF=2EC,則△FDC周長(zhǎng)等于AB的長(zhǎng);其中正確的有(  )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

【答案】D

【解析】

證明△ADC≌△BDF即可一一判斷.

解:∵△ABC中,AD,BE分別為BC、AC邊上的高,∠ABC=45°,

∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,

而∠ADB=∠ADC=90°,

∴△BDF≌△ADC,

∴BF=AC,故①正確,

∴FD=CD,

∴∠FCD=∠CFD=45°,故②正確;

BF=2EC,根據(jù)①得BF=AC,

∴AC=2EC,

EAC的中點(diǎn),

∴BE為線段AC的垂直平分線,

∴AF=CF,BA=BC,

∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,

即△FDC周長(zhǎng)等于AB的長(zhǎng),故③正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE將△ABE折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,連接EF并延長(zhǎng)交AD于G,EG將ABCD分為面積相等的兩部分.則SABE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明購(gòu)買了一部新手機(jī),到某通訊公司咨詢移動(dòng)電話資費(fèi)情況,準(zhǔn)備辦理入網(wǎng)手續(xù),該通訊公司工作人員向他介紹兩種不同的資費(fèi)方案:

方案代號(hào)

月租費(fèi)(元)

免費(fèi)時(shí)間(分)

超過(guò)免費(fèi)時(shí)間的通話費(fèi)(元/分)

10

0

0.20

30

80

0.15


(1)分別寫(xiě)出方案一、二中,月話費(fèi)(月租費(fèi)與通話費(fèi)的總和)y(單位:元)與通話時(shí)間x(單位:分)的函數(shù)關(guān)系式;
(2)畫(huà)出(1)中兩個(gè)函數(shù)的圖象;
(3)若小明月通話時(shí)間為200分鐘左右,他應(yīng)該選擇哪種資費(fèi)方案最省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE,AB=AD,AC=AE.且E,F(xiàn),C,D在同一直線上.

(1)求證:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,點(diǎn)F是CE的中點(diǎn),連結(jié)AF,求∠FAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①如果兩個(gè)三角形全等,那么這兩個(gè)三角形一定成軸對(duì)稱;②數(shù)軸上的點(diǎn)和實(shí)數(shù)一一對(duì)應(yīng);③3的一個(gè)平方根;④兩個(gè)無(wú)理數(shù)的和一定為無(wú)理數(shù);⑤6.9103精確到十分位;⑥ 的平方根是4.其中正確的__________ .(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

(材料)如圖,對(duì)任意符合條件的直角三角形BAC,繞其銳角頂點(diǎn)逆時(shí)針旋轉(zhuǎn)90°DAE,所以∠BAE=90°,且四邊形ACFD是一個(gè)正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于RtBAERtBFE的面積之和,根據(jù)圖形我們就能證明勾股定理: .

(請(qǐng)回答)如圖是任意符合條件的兩個(gè)全等的RtBEARtACD拼成的,你能根據(jù)圖示再寫(xiě)一種證明勾股定理的方法嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案