【題目】把下列各數(shù)填在相應的集合里:
2018,1,-1,-2014,0.5,,-,-0.75,0,20%,
整數(shù)集合:{____________________…};正分數(shù)集合:{________________…};
負分數(shù)集合:{________________…};正數(shù)集合:{__________________…};
負數(shù)集合:{__________________…}.
【答案】整數(shù)集合:{2018,1,-1,-2014,0,…};正分數(shù)集合:{0.5,,… };負分數(shù)集合{-…};正數(shù)集合{2018,1,0.5, ,,…};負數(shù)集合:{-1,-2014,-,-0.75,…}
【解析】
按有理數(shù)的分類結合相關數(shù)的集合的概念進行分析解答即可.
將2018,1,-1,-2014,0.5,,-,-0.75,0,20%, 填入相應的集合,結果為:
整數(shù)集合:{2018,1,-1,-2014,0,…};正分數(shù)集合:{0.5,,… };
負分數(shù)集合{-…};正數(shù)集合{2018,1,0.5, ,…};負數(shù)集合:{-1,-2014,-,-0.75,…}.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形ABC三個頂點A,B,C的坐標分別為A(1,2),B(4,3),C(3,1).
(1)三角形A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到三角形ABC,試寫出三角形A1B1C1三個頂點的坐標.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,點O是AC邊上的一個動點,過O作直線MN∥BC,設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,下列結論中正確的是( )
①OE=OF;②CE=CF;③若CE=12,CF=5,則OC的長為6;④當AO=CO時,四邊形AECF是矩形.
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC,BD相交于點O,若E、F是AC上兩動點,E、F分別
從A、C兩點同時以1cm/s的相同的速度向C、A運動.
(1)四邊形DEBF是平行四邊形嗎?說明你的理由.
(2)若BD=10cm,AC=16cm,當運動時間t為多少時,
四邊形DEBF為矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級某班同學為了了解2012年某居委會家庭月均用水情況,隨機調(diào)查了該居委會部分家庭,并將調(diào)查數(shù)據(jù)進行如下調(diào)整:
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | a | 0.24 |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | 0.08 |
25<x≤30 | 2 | 0.04 |
請解答以下問題:
(1)頻數(shù)分布表中a= ,把頻數(shù)分布直方圖補充完整;
(2)求該居委會用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該居委會有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,點E在BC邊的延長線上,CE=BC,連接AE,交CD邊于點F,且CF=DF.
(1)如圖1,求證:AD=BC;
(2)如圖2,連接BD、DE,若BD⊥DE,請判定四邊形ABCD的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,點A1,A2,A3,A4和C1,C2,C3,C4分別AB和CD的五等分點,點B1,B2和D1,D2分別是BC和DA的三等分點,已知四邊形A4B2C4D2的面積為1,則平行四邊形ABCD面積為( )
A. 2 B. C. D. 15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時,OA、OC、ON三條射線構成相等的角,求此時t的值為多少?
(2)將圖1中的三角板繞點O順時針旋轉(zhuǎn)圖2,使ON在∠AOC的內(nèi)部,請?zhí)骄浚?/span>∠AOM與∠NOC之間的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com