【題目】某商家銷售一種商品,銷售一段時間后發(fā)現(xiàn),每天的銷量y(件)與當(dāng)天的銷售單價x(元/件)滿足一次函數(shù)關(guān)系,并且當(dāng)x30時,y500;當(dāng)x35時,y450.物價部門規(guī)定,該商品的銷售單價不能超過48/件,若該商品的定價為30元,實(shí)際按定價的8折出售,仍然可以獲得20%的利潤.

1)求該商品的成本價和每天獲得的最大利潤;

2)該公司每天需要人工、水電和房租支出共計(jì)b元,若考慮這一因素后公司對最大利潤要控制在8000元至8500元之間(包含80008500),求出b的取值范圍;

3)若該商品的進(jìn)價改為a元,每天的銷量與當(dāng)天的銷售單價的關(guān)系不變,當(dāng)30≤x≤48時,該商品利潤隨x的增大而增大,求a的取值范圍.

【答案】1)該商品的成本價為20元,每天獲得的最大利潤為8960元;(2500≤b≤1000;(30≤a≤16

【解析】

(1)根據(jù)利潤=利潤率×成本,總利潤=單件利潤×銷售量列式計(jì)算即可;

(2)根據(jù)(1)所得總利潤﹣b,控制在8000元至8500元之間,即可求出b的取值范圍;

(3)根據(jù)二次函數(shù)的性質(zhì)當(dāng)30≤x≤48時,即在對稱軸左側(cè),該商品利潤隨x的增大而增大,即可確定a的取值范圍.

(1)設(shè)每天的銷量y(件)與當(dāng)天的銷售單價x(元/件)滿足的一次函數(shù)關(guān)系式為:

y=kx+b,

當(dāng)x=30時,y=500;當(dāng)x=35時,y=450代入得:

k=﹣10b=800,

∴一次函數(shù)關(guān)系式為:y=﹣10x+800

設(shè)該商品的成本價為a元,根據(jù)題意,得:

解得:a=20

設(shè)每天獲得的利潤為w元,根據(jù)題意,得

∵﹣100,銷售單價不能超過48/件,

x≤48時,wx的增大而增大,

∴當(dāng)x=48時,w有最大值,最大值為8960

答:該商品的成本價為20元,每天獲得的最大利潤為8960元;

(2)∵該公司每天需要人工、水電和房租支出共計(jì)b元,

最大利潤要控制在8000元至8500元之間,

8000≤9000b≤8500

500≤b≤1000

(3)根據(jù)題意,得

w=(xa)(﹣10x+800)

=﹣10x2+(800+10a)x800a

∵當(dāng)30≤x≤48時,該商品利潤隨x的增大而增大,

對稱軸

≤48

解得:a≤16

a的取值范圍是:0≤a≤16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過點(diǎn)(10).

(1)當(dāng),時,求二次函數(shù)的解析式及二次函數(shù)最小值;

(2)二次函數(shù)的圖像經(jīng)過點(diǎn)(,),().若對任意實(shí)數(shù),函數(shù)值都不小于,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】富平因取富庶太平之意而得名,是華夏文明重要發(fā)祥地之一.某班舉行關(guān)于美麗的富平的演講活動.小明和小麗都想第一個演講,于是他們通過做游戲來決定誰第一個來演.講游戲規(guī)則是:在一個不透明的袋子中有一個黑球a和兩個白球b、c,(除顏色外其它均相同),小麗從袋子中摸出一個球,放回后攪勻,小明再從袋子中摸出一個球,若兩次摸到的球顏色相同,則小麗獲勝,否則小明獲勝,請你用樹狀圖或列表的方法分別求出小麗與小明獲勝的概率,并說明這個游戲規(guī)則對雙方公平嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,BD平分∠ABC.求作⊙O,使得點(diǎn)O在邊AB上,且⊙O經(jīng)過B、D兩點(diǎn);并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正六邊形ABCDEF的頂點(diǎn)B、C分別在正方形AMNP的邊AM、MN上,CDPN交于點(diǎn)H,則HN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(),點(diǎn)C的坐標(biāo)為().

1)在圖中作出的外接圓(利用格圖確定圓心);

2)圓心坐標(biāo)為 _____;外接圓半徑 _____;

3)若在軸的正半軸上有一點(diǎn),且,則點(diǎn)的坐標(biāo)為 _____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)yk0,x0)的圖象上,ABx軸于點(diǎn)B,OCAB于點(diǎn)D,若CDOD,則AODBCD的面積比為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B1cm/s的速度勻速運(yùn)動到點(diǎn)B,圖2是點(diǎn)F運(yùn)動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為(  )

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動,集體跳繩時,需要兩人同頻甩動繩子,當(dāng)繩子甩到最高處時,其形狀可近似看作拋物線.如圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為,離地面的高度為,以小明的手所在位置為原點(diǎn),建立平面直角坐標(biāo)系.

1)當(dāng)身高為的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)處時,繩子剛好通過小紅的頭頂,求繩子所對應(yīng)的拋物線的表達(dá)式;

2)若身高為的小麗也站在繩子的正下方.

①當(dāng)小麗在距小亮拿繩子手的左側(cè)處時,繩子能碰到小麗的頭嗎?請說明理由;

③設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù):3.16

查看答案和解析>>

同步練習(xí)冊答案