【題目】如圖,在ABCD中,EAD上一點,延長CE到點F,使∠FBC=DCE

(1)求證:∠D=F

(2)用直尺和圓規(guī)在AD上作出一點P,使BPC∽△CDP(保留作圖的痕跡,不寫作法).

【答案】(1)證明見解析;(2)答案見解析.

【解析】

(1)BEADG,先利用ADBC得到FBC=∠FGE,加上FBC=∠DCE,所以FGE=∠DCE,然后根據(jù)三角形內角和定理易得D=∠F;

(2)分別作BCBF的垂直平分線,它們相交于點O,然后以O為圓心,OC為半徑作BCF的外接圓O,⊙OADP,連結BP、CP,則根據(jù)圓周角定理得到F=∠BPC,而F=∠D,所以D=∠BPC,接著可證明PCD=∠APB=∠PBC,于是可判斷BPCCDP

解:(1)BEADG如圖,四邊形ABCD為平行四邊形,ADBC,∴∠FBC=∠FGE

FBC=∠DCE,∴∠FGE=∠DCE

∵∠GEF=∠DEC,∴∠D=∠F;

(2)如圖,點P為所作.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

某玩具廠生產一種玩具,按照控制固定成本降價促銷的原則,使生產的玩具能夠及時售出,據(jù)市場調查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A0,1),B4,2),C20).

1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;

2)將△ABC繞著點(﹣1,﹣1)旋轉180°得到△A2B2C2,畫出△A2B2C2;

3)線段B2C2可以看成是線段B1C1繞著平面直角坐標系中某一點逆時針旋轉得到,直接寫出旋轉中心的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

(1)第1個等式:a1=; 第2個等式:a2=;

第3個等式:a3=; 第4個等式:a4=;

用含有n的代數(shù)式表示第n個等式:an=___________=___________(n為正整數(shù));

(2)按一定規(guī)律排列的一列數(shù)依次為,1, , , , ,…,按此規(guī)律,這列數(shù)中的第100個數(shù)是_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某區(qū)八年級學生的睡眠情況,隨機抽取了該區(qū)八年級學生部分學生進行調查.已知D組的學生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計圖表.

一、學生睡眠情況分組表(單位:小時)

組別

睡眠時間

二、學生睡眠情況統(tǒng)計圖

根據(jù)圖表提供的信息,回答下列問題:

1)試求八年級學生睡眠情況統(tǒng)計圖中的a的值及a對應的扇形的圓心角度數(shù);

2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學生有3250人,試估計該區(qū)八年級學生睡眠時間合格的共有多少人?

3)如果將各組別學生睡眠情況分組的最小值(如C組別中,取),B、C、D三組學生的平均睡眠時間作為八年級學生的睡眠時間的依據(jù).試求該區(qū)八年級學生的平均睡眠時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州某風景區(qū)門票價格如圖所示,有甲、乙兩個旅行團隊,計劃在端午節(jié)期間到該景點游玩,兩團隊游客人數(shù)之和為100人,若乙團隊人數(shù)不超過40人,甲團隊人數(shù)不超過80人,設甲團隊人數(shù)為人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為元.

1)直接寫出關于的函數(shù)關系式,并寫出自變量的取值范圍;

2)計算甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少錢?

3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個月實行門票打五折的優(yōu)惠(打折期間不售團體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過調研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運營成本也隨之增加,景區(qū)運營成本(萬元)與兩個月游客總人數(shù)(萬人)之間滿足函數(shù)關系式:;兩個月游客總人數(shù)(萬人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤,景區(qū)決定通過網(wǎng)絡預約購票的方式控制淡季每天游客數(shù),請問景區(qū)的決定是否正確?并說明理由.(利潤門票收入景區(qū)運營成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.

1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;

2)求一次打開鎖的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從如圖所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:①c0,②abc0,③a-b+c0,④4ac,⑤2a=2b,其中正確結論是( 。

A.①②④B.②③④C.③④⑤D.①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為關聯(lián)等腰三角形.如圖,在中, ,且所以稱關聯(lián)等腰三角形,設它們的頂角為,連接,則稱會為關聯(lián)比"

下面是小穎探究關聯(lián)比α之間的關系的思維過程,請閱讀后,解答下列問題:

[特例感知]

關聯(lián)等腰三角形,且時,

①在圖1中,若點落在上,則關聯(lián)比=

②在圖2中,探究的關系,并求出關聯(lián)比的值.

[類比探究]

如圖3,

①當關聯(lián)等腰三角形,且時,關聯(lián)比=

②猜想:當關聯(lián)等腰三角形,且時,關聯(lián)比= (直接寫出結果,用含的式子表示)

[遷移運用]

如圖4, 關聯(lián)等腰三角形.若邊上一點,且,點上一動點,求點自點運動至點時,點所經(jīng)過的路徑長.

查看答案和解析>>

同步練習冊答案