【題目】如圖,在ABCD中,E是AD上一點,延長CE到點F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
【答案】(1)證明見解析;(2)答案見解析.
【解析】
(1)BE交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根據(jù)三角形內角和定理易得∠D=∠F;
(2)分別作BC和BF的垂直平分線,它們相交于點O,然后以O為圓心,OC為半徑作△BCF的外接圓⊙O,⊙O交AD于P,連結BP、CP,則根據(jù)圓周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接著可證明∠PCD=∠APB=∠PBC,于是可判斷△BPC∽△CDP.
解:(1)BE交AD于G.如圖,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠FBC=∠FGE.
而∠FBC=∠DCE,∴∠FGE=∠DCE.
∵∠GEF=∠DEC,∴∠D=∠F;
(2)如圖,點P為所作.
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
某玩具廠生產一種玩具,按照控制固定成本降價促銷的原則,使生產的玩具能夠及時售出,據(jù)市場調查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,1),B(4,2),C(2,0).
(1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;
(2)將△ABC繞著點(﹣1,﹣1)旋轉180°得到△A2B2C2,畫出△A2B2C2;
(3)線段B2C2可以看成是線段B1C1繞著平面直角坐標系中某一點逆時針旋轉得到,直接寫出旋轉中心的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
(1)第1個等式:a1=; 第2個等式:a2=;
第3個等式:a3=; 第4個等式:a4=;
…
用含有n的代數(shù)式表示第n個等式:an=___________=___________(n為正整數(shù));
(2)按一定規(guī)律排列的一列數(shù)依次為,1, , , , ,…,按此規(guī)律,這列數(shù)中的第100個數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某區(qū)八年級學生的睡眠情況,隨機抽取了該區(qū)八年級學生部分學生進行調查.已知D組的學生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計圖表.
一、學生睡眠情況分組表(單位:小時)
組別 | 睡眠時間 |
二、學生睡眠情況統(tǒng)計圖
根據(jù)圖表提供的信息,回答下列問題:
(1)試求“八年級學生睡眠情況統(tǒng)計圖”中的a的值及a對應的扇形的圓心角度數(shù);
(2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學生有3250人,試估計該區(qū)八年級學生睡眠時間合格的共有多少人?
(3)如果將各組別學生睡眠情況分組的最小值(如C組別中,取),B、C、D三組學生的平均睡眠時間作為八年級學生的睡眠時間的依據(jù).試求該區(qū)八年級學生的平均睡眠時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】揚州某風景區(qū)門票價格如圖所示,有甲、乙兩個旅行團隊,計劃在端午節(jié)期間到該景點游玩,兩團隊游客人數(shù)之和為100人,若乙團隊人數(shù)不超過40人,甲團隊人數(shù)不超過80人,設甲團隊人數(shù)為人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為元.
(1)直接寫出關于的函數(shù)關系式,并寫出自變量的取值范圍;
(2)計算甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少錢?
(3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個月實行門票打五折的優(yōu)惠(打折期間不售團體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過調研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運營成本也隨之增加,景區(qū)運營成本(萬元)與兩個月游客總人數(shù)(萬人)之間滿足函數(shù)關系式:;兩個月游客總人數(shù)(萬人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤,景區(qū)決定通過網(wǎng)絡預約購票的方式控制淡季每天游客數(shù),請問景區(qū)的決定是否正確?并說明理由.(利潤門票收入景區(qū)運營成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.
(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;
(2)求一次打開鎖的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從如圖所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:①c>0,②abc<0,③a-b+c>0,④>4ac,⑤2a=-2b,其中正確結論是( 。
A.①②④B.②③④C.③④⑤D.①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為“關聯(lián)等腰三角形”.如圖,在與中, ,且所以稱與為“關聯(lián)等腰三角形”,設它們的頂角為,連接,則稱會為“關聯(lián)比".
下面是小穎探究“關聯(lián)比”與α之間的關系的思維過程,請閱讀后,解答下列問題:
[特例感知]
當與為“關聯(lián)等腰三角形”,且時,
①在圖1中,若點落在上,則“關聯(lián)比”=
②在圖2中,探究與的關系,并求出“關聯(lián)比”的值.
[類比探究]
如圖3,
①當與為“關聯(lián)等腰三角形”,且時,“關聯(lián)比”=
②猜想:當與為“關聯(lián)等腰三角形”,且時,“關聯(lián)比”= (直接寫出結果,用含的式子表示)
[遷移運用]
如圖4, 與為“關聯(lián)等腰三角形”.若點為邊上一點,且,點為上一動點,求點自點運動至點時,點所經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com