【題目】下面選項中符合代數(shù)式書寫要求的是 ( )

A. y2 B. ay·3 C. D. a×b+c

【答案】C

【解析】

(1)在代數(shù)式中出現(xiàn)的乘號,通常簡寫成“”或者省略不寫;(2)數(shù)字與字母相乘時,數(shù)字要寫在字母的前面;(3)在代數(shù)式中出現(xiàn)的除法運(yùn)算,一般按照分?jǐn)?shù)的寫法來寫.帶分?jǐn)?shù)要寫成假分?jǐn)?shù)的形式.根據(jù)代數(shù)式的定義解答.代數(shù)式是由運(yùn)算符號(加、減、乘、除、乘方、開方)把數(shù)或表示數(shù)的字母連接而成的式子.單獨(dú)的一個數(shù)或者一個字母也是代數(shù)式.帶有“<(≤)”“>(≥)”“=”“≠”等符號的不是代數(shù)式.

A、不符合代數(shù)式書寫要求,應(yīng)為y2

B、不符合代數(shù)式書寫要求,應(yīng)為3ay;

C、符合代數(shù)式書寫要求;

D、不符合代數(shù)式書寫要求,應(yīng)為ab+c.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字1,2,3,4,如圖2,正方形ABCD頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長. 例如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D,若第二次擲得2,就從D開始順時針連續(xù)跳2個邊長,落到圈B,…設(shè)游戲者從圈A起跳.

(1)若隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)若隨機(jī)擲兩次骰子,用列表法或樹狀圖法求出最后落回到圈A的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點M、N是∠ABC與∠ACB三等分線的交點.若∠A=60°,則∠BMN的度數(shù)為(  )

A. 45° B. 50° C. 60° D. 65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,若AB=4,E是AD邊上一點(點E與點A、D不重合),BE的中垂線交AB于點M,交DC于點N,設(shè)AE=x,BM=y,則y與x的大致圖象是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,一次函數(shù)y= x+3的圖像與y軸交于點A,點M在正比例函數(shù)y= x的圖像x>0的那部分上,且MO=MA(O為坐標(biāo)原點).
(1)求線段AM的長;
(2)若反比例函數(shù)y= 的圖像經(jīng)過點M關(guān)于y軸的對稱點M′,求反比例函數(shù)解析式,并直接寫出當(dāng)x>0時, x+3與 的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點EH分別在AB、AC上,已知BC=40cmAD=30cm

1)求證:AEH∽△ABC;

2)求這個正方形的邊長與面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正六邊形的周長是12,那么這個正六邊形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在9×9網(wǎng)格中,每個小方格的邊長看作單位1,每個小方格的頂點叫作格點,△ABC的頂點都在格點上.

(1)請在網(wǎng)格中畫出△ABC的一個位似圖形△A1B1C,使兩個圖形以點C為位似中心,且所畫圖形與△ABC的相似比為2∶1;

(2)將△A1B1C繞著點C順時針旋轉(zhuǎn)90°得△A2B2C,畫出圖形,并在如圖所示的坐標(biāo)系中分別寫出△A2B2C三個頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】這次數(shù)學(xué)實踐課上,同學(xué)進(jìn)行大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為37°,然后沿在同一剖面的斜坡AB行走5 米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度i=1:2(通常把坡面的垂直高度h和水平寬度l的比叫做坡度,即tanα值(α為斜坡與水平面夾角),那么大樹CD的高度約為(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )

A.7米
B.7.2米
C.9.7米
D.15.5米

查看答案和解析>>

同步練習(xí)冊答案