【題目】按如圖的程序進(jìn)行操作,規(guī)定:程序運(yùn)行從“輸入一個值x”到“結(jié)果是否>487?”為一次操作. ①如果輸入x的值為5,那么操作進(jìn)行______次才停止.
②如果輸入x的值為2k-1,并且操作進(jìn)行四次才停止,那么k的最大值是________.
【答案】5; 10
【解析】
①將x=5代入3x-2逐次判斷是否大于487即可得;
②根據(jù)運(yùn)算程序,列出算式:3x-2,由于運(yùn)行了四次,所以將每次運(yùn)算的結(jié)果再代入算式,然后再解不等式即可.
解:①當(dāng)x=5時,3x-2=13<487,
當(dāng)x=13時,3x-2=37<487,
當(dāng)x=37時,3x-2=109<487,
當(dāng)x=109時,3x-2=325<487,
當(dāng)x=325時,3x-2=973>487,
∴當(dāng)輸入實(shí)數(shù)x=5時,要操作5次才停止,
故答案為:5;
②第一次的結(jié)果為:3x-2,沒有輸出,則3x-2≤487,
解得:x≤163;
第二次的結(jié)果為:3(3x-2)-2=9x-8,沒有輸出,則9x-8≤487,
解得:x≤55;
第三次的結(jié)果為:3(9x-8)-2=27x-26,沒有輸出,則27x-26≤487,
解得:x≤19;
第四次的結(jié)果為:3(27x-26)-2=81x-80,輸出,則81x-80>487,
解得:x;
綜上可得:7<x≤19.
∵x=2k-1
則7<2k-1≤19,解得:4<k≤10,
則k的最大值是:10
故答案為:10
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(diǎn)(不含B、C兩點(diǎn)),將 ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將 CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的個數(shù)有( ).
① CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點(diǎn)時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當(dāng) ABP≌ AND時,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn).三個頂點(diǎn)都在網(wǎng)格上的三角形叫做格點(diǎn)三角形.小華已在左邊的正方形網(wǎng)格中作出了格點(diǎn)△ABC.請你在右邊的兩個正方形網(wǎng)格中各畫出一個不同的格點(diǎn)三角形,使得三個網(wǎng)格中的格點(diǎn)三角形都相似(不包括全等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后分別按原速同時駛往甲地,兩車之間的距離s(km)與慢車行駛時間t(h)之間的函數(shù)圖象如圖所示,則下列說法中:①甲、乙兩地之間的距離為560km;②快車速度是慢車速度的1.5倍;③快車到達(dá)甲地時,慢車距離甲地60km;④相遇時,快車距甲地320km;正確的是( )
A. ①② B. ①③ C. ①④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將△ABC紙片沿DE折疊,使點(diǎn)C落在四邊形ABDE內(nèi)點(diǎn)C’的位置,
(1)①若,則 ;
②若,則 ;
③探索 、與之間的數(shù)量關(guān)系,并說明理由;
(2)直接按照所得結(jié)論,填空:
①如圖中,將△ABC紙片再沿FG、MN折疊,使點(diǎn)A、B分別落在△ABC內(nèi)點(diǎn)A’、B’的位置,則 ;
②如圖中,將四邊形ABCD按照上面方式折疊,則 ;
③若將n邊形也按照上面方式折疊,則 ;
(3)如圖,將△ABC紙片沿DE折疊,使點(diǎn)落在△ABC邊上方點(diǎn)的位置, 探索、與之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com