【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,陰影部分的面積是 (寫成平方差的形式);
(2)如圖2,若將陰影部分裁剪后重新拼成一個長方形,它的寬是 長是 ,面積可表示為 (寫成多項式乘法的形式).
(3)運用以上得到的公式,計算:(x﹣2y+3z)(x+2y﹣3z)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.
(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;
(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);
(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級共有800名學(xué)生,準(zhǔn)備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團委設(shè)計了以下三種方案:
方案一:調(diào)查七年級部分女生;
方案二:調(diào)查七年級部分男生;
方案三:到七年級每個班去隨機調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個方案是 ;
(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請你估計該校七年級約有 名學(xué)生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D為CB上一點,過點D作DE⊥AB于點E.
(1)若CD=DE,判斷∠CAD與∠BAD的數(shù)量關(guān)系;
(2)若AE=EB,CB=10,AC=5,求△ACD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交A(1,4),B(-4,c)兩點,
如圖2所示,點M、N都在直線AB上,過M、N分別作y軸的平行線交雙曲線于E、F,設(shè)M、N的橫坐標(biāo)分別為m、n,且 4 < m < 0 , n > 1 ,請?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時,ME=NE.
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)點P是x軸上一動點,使|PA-PB|的值最大,求點P的坐標(biāo)及△PAB的面積;
(3)如圖2所示,點M、N都在直線AB上,過M、N分別作y軸的平行線交雙曲線于E、F,設(shè)M、N的橫坐標(biāo)分別為m、n,且 , n>1,請?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時,ME=NE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動點P從A出發(fā)以2cm/秒的速度,沿矩形的邊A—B—C—D回到點A,設(shè)點P的運動時間為t秒,
(1)當(dāng)t=3秒時,求BP的長;
(2)當(dāng)t為何值時,連接BP,AP,△ABP的面積為長方形的面積三分之一?
(3)Q為AD邊上的點,且DQ=5,當(dāng)t為何值時,以長方形的兩個頂點及點P為頂點的三角形與△DCQ全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB于點D,點E在CD上,下列四個條件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,將其中兩個作為條件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com