精英家教網 > 初中數學 > 題目詳情

【題目】求函數的最值.

【答案】|b|1,y極大值y極小值;②|b|1 y極大值;y極小值,③當ab1時,y極大值 ab1時,y極小值

【解析】

將函數y化為關于x的一元二次方程:(1-yx2+2a-byx+1-y=0,從而得出≥0,將本題視為在≥0的情況下求y的最值,然后討論b的范圍,在b不同范圍內求出y的最值.

y化為關于x的二次方程(1yx2+2abyx+1y)=0

∵△=(b21y22ab1y+a21≥0,

b210,即|b|1,

y= ,可得y≤ y≥,

y極大值

y極小值;

b210,即|b|1,則有 ≤y≤

y極大值;

y極小值

b210,即|b|1,得(ab-1y≤,

ab1時,y≤,∴y極大值;

ab1時,y≥,∴y極小值

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校開展了為期一周的敬老愛親社會活動,為了解情況,學生會隨機調查了部分學生在這次活動中做家務的時間,并將統(tǒng)計的時間(單位:小時)分成5組,A0.5≤x1,B1≤x1.5C1.5≤x2,D2≤x2.5,E2.5≤x3,制作成兩幅不完整的統(tǒng)計圖(如圖).

請根據圖中提供的信息,解答下列問題:

1)學生會隨機調查了   名學生;

2)補全頻數分布直方圖;

3)若全校有1800名學生,估計該校在這次活動中做家務的時間不少于2.5小時的學生有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CAB延長線上一點,CD⊙O相切于點E,AD⊥CD于點D

1)求證:AE平分∠DAC

2)若AB=4,∠ABE=60°

AD的長;

求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為測量某建筑物EF的高度,小明在樓AB上選擇觀測點A、C,從A測得建筑物的頂部E的仰角為37°,從C測得建筑物的頂部E的仰角為45°,A處高度為20m,C處高度為10m.求建筑物EF的高度(精確到1m).

(參考數據:sin37°≈0.6,cos37°≈0.8,tan37≈0.75,≈1.4)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線的頂點為C,對稱軸為直線,且經過點A(3,-1),與y軸交于點B.

(1)求拋物線的解析式;

(2)判斷ABC的形狀,并說明理由;

(3)經過點A的直線交拋物線于點P,交x軸于點Q,若,試求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線l:y=kx+1與拋物線y=x2-4x

(1)求證:直線l與該拋物線總有兩個交點;

(2)設直線l與該拋物線兩交點為A,B,O為原點,當k=-2時,求△OAB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于點A(﹣1,0),頂點坐標(1,n),y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②﹣1≤a≤﹣;③對于任意實數m,a+bam2+bm總成立;關于x的方程ax2+bx+cn﹣1有兩個不相等的實數根.其中結論正確的個數為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程:

(1); (2);

(3)2x2-6x-1=0. (4)2y(y+2)-y=2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】九(1)班數學興趣小組經過市場調查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進價為每件30元,設銷售該商品的每天利潤為y[

1)求出yx的函數關系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.

查看答案和解析>>

同步練習冊答案