【題目】某企業(yè)生產(chǎn)部統(tǒng)計了15名工人某月加工的零件數(shù):
(1)寫出這15人該月加工的零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù);
(2)若生產(chǎn)部領(lǐng)導把每位工人的月加工零件數(shù)定為260件,你認為是否合理,為什么?
【答案】(1)平均數(shù)為260(件);中位數(shù)為240件;眾數(shù)為240件;(2)不合理
【解析】(1)平均數(shù)=加工零件總數(shù)÷總?cè)藬?shù),中位數(shù)是將一組數(shù)據(jù)按照由小到大(或由大到。┑捻樞蚺帕,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).本題中應(yīng)是第7個數(shù).眾數(shù)又是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).240出現(xiàn)6次;
(2)應(yīng)根據(jù)中位數(shù)和眾數(shù)綜合考慮.
解:(1)平均數(shù): =260(件);
中位數(shù):240(件);
眾數(shù):240(件);
(2)不合理,因為表中數(shù)據(jù)顯示,每月能完成260件的人數(shù)一共是4人,還有11人不能達到此定額,盡管260是平均數(shù),但不利于調(diào)動多數(shù)員工的積極性,因為240既是中位數(shù),又是眾數(shù),是大多數(shù)人能達到的定額,故定額為240較為合理.
科目:初中數(shù)學 來源: 題型:
【題目】以下是某網(wǎng)絡(luò)書店月關(guān)于圖書銷售情況的兩個統(tǒng)計圖:
()求月份該網(wǎng)絡(luò)書店繪本類圖書的銷售額.
()若已知月份與月份這兩個月的繪本類圖書銷售額相同,請補全統(tǒng)計圖.
()有以下兩個結(jié)論:
①該書店第一季度的銷售總額為萬元.
②該書店月份到月份繪本類圖書銷售額的月增長率相等.
請你判斷以上兩個結(jié)論是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(2,2)……根據(jù)這個規(guī)律,第25個點的坐標為____________,第2018個點的坐標為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( 。.
A.某種彩票的中獎率為1%,買100張彩票一定有1張中獎
B.從裝有10個紅球的袋子中,摸出1個白球是不可能事件
C.為了解一批日光燈的使用壽命,可采用抽樣調(diào)查的方式
D.擲一枚普通的正六面體骰子,出現(xiàn)向上一面點數(shù)是2的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生的藝術(shù)特長發(fā)展情況,某校音樂組決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)在這次調(diào)查中一共抽查了多少名學生?其中,喜歡“舞蹈”活動項目的人數(shù)占抽查總?cè)藬?shù)的百分比為多少?喜歡“戲曲”活動項目的人數(shù)是多少人?
(2)若在“舞蹈、樂器、聲樂、戲曲”活動項目任選兩項設(shè)立課外興趣小組,請用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校開展綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月11日至5月30日,評委們把同學們上交作品的件數(shù)按5天一組分組統(tǒng)計,繪制了頻數(shù)分 布直方圖如下,小長方形的高之比為:2:5:2:1.現(xiàn)已知第二組的上交作品件數(shù)是20件.求:
(1)此班這次上交作品共多少件?
(2)評委們一致認為第四組的作品質(zhì)量都比較高,現(xiàn)從中隨機抽取2件作品參加學校評比,小明的兩件作品都在第四組中,他的兩件作品都被抽中的概率是多少?(請寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距 千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時.
(3)B出發(fā)后 小時與A相遇.
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點 A(2,0),B(0,4),點 C 在第一象限.
(1)如圖 1,連接 AB、BC、AC,∠OBC=90°,∠BAC=2∠ABO,求點 C 的坐標;
(2)動點 P 從點 B 出發(fā),以每秒 2 個單位的速度沿 x 軸負方向運動,連接 AP,設(shè) P 點的 運動時間為 t 秒,△AOP 的面積為 S,用含 t 的式子表示 S,并直接寫出 t 的取值范圍;
(3)如圖 2,在(1)條件下,點 P 在線段 OB 上,連接 AP、PC,AB 與 PC 相交于點 Q,當S=3, ∠BAC=∠BPC 時,求△ACQ 的面積.
圖 1 圖 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com