在△ABC中,∠BAC=90°,AD⊥BC于D,AC=3,AB=4,
(1)求sin∠DAC的值;
(2)若以2.5為半徑作⊙A,判斷直線BC與⊙A的位置關系,并說明理由.
【答案】分析:(1)中,因為AD⊥BC,所以∠ADC=90°,直接根據(jù)銳角三角函數(shù)的定義sin∠DAC=求出.
(2)中,欲求直線BC與圓的位置關系,關鍵是求出點A到BC的距離d,再與半徑r2.5進行比較.
若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:(1)由勾股定理BC=,
由面積公式得AB•AC=AD•BC,
∴AD=,
∴CD==3.2,
∴sin∠DAC==0.8.
(2)∵AD=<r=2.5,
所以圓與直線的位置關系是相交.
點評:本題考查的是銳角三角函數(shù),勾股定理和直線與圓的位置關系,求銳角三角函數(shù)可以根據(jù)直角三角形的三邊關系來求,解決直線與圓的位置關系可通過比較圓心到直線距離d與圓半徑大小關系完成判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運動精英家教網(wǎng);同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運動,設運動時間為x.
(1)當x為何值時,PQ∥BC;
(2)當
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點,P是線段BM上的動點,將線段PA繞點P順時針旋轉2α得到線段PQ.
(1)若α=60°且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,請補全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點P不與點B,M重合,線段CQ的延長線于射線BM交于點D,猜想∠CDB的大小(用含α的代數(shù)式表示),并加以證明;
(3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B,M重合)時,能使得線段CQ的延長線與射線BM交于點D,且PQ=QD,請直接寫出α的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以4cm/s的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設運動時間為x秒.
(1)當x為何值時,BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點B為旋轉中心,將△BEC按逆時針旋轉∠ABC,得到△BE′A(點C與點A重合,點E到點E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以每秒4cm,的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設運動時間為x秒.
(1)當x為何值時,BP=CQ
(2)當x為何值時,PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案