【題目】已知四邊形ABCD中,AB//CD,AC//BD,下列判斷中正確的是 ( )

A. 如果BC=AD,那么四邊形ABCD是等腰梯形;

B. 如果AD//BC,那么四邊形ABCD是菱形;

C. 如果AC平分BD,那么四邊形ABCD是矩形;

D. 如果AC⊥BD,那么四邊形ABCD是正方形.

【答案】C

【解析】分析:根據(jù)特殊四邊形的判定方法一一判斷即可.

詳解:A.四邊形還可能是矩形.故錯誤.

B.兩組對邊分別平行的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,故錯誤.

C.根據(jù)平分,先證明三角形全等,得到根據(jù)一組對邊平行且相等的四邊形是平行四邊形可得四邊形是平行四邊形,根據(jù)對角線相等的平行四邊形是矩形,則四邊形是矩形,故正確.

D.對角線相等且互相垂直的四邊形不是正方形.故錯誤.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對角線AC上的兩點,AE=CF.

1)求證:四邊形DEBF是平行四邊形;

2)如果AE=EF=FC,請直接寫出圖中2所有面積等于四邊形DEBF的面積的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代對于利用方程解決實際問題早有研究,《九章算術(shù)》中提到這么一道“以繩測井”的題:以繩測井,若將繩三折測之,繩多四尺:若將繩四折測之,繩多一尺.繩長、井深各幾何?

這道題大致意思是:用繩子測量水井深度,如果將繩子折成三等份,那么每等份井外余繩四尺:如果將繩子折成四等份,那么每等份井外余繩一尺.問繩長和井深各多少尺?若設井深為x尺,則求解井深的方程正確的是( 。

A.3x+4)=4x+1B.3x+44x+1

C.x+4x+1D.x4x1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解2014年某地區(qū)10萬名大、中、小學生50米跑成績情況,教育部門從這三類學生群體中各抽取了10%的學生進行檢測,整理樣本數(shù)據(jù),并結(jié)合2010年抽樣結(jié)果,得到下列統(tǒng)計圖:

1)本次檢測抽取了大、中、小學生共   名,其中小學生   名;

2)根據(jù)抽樣的結(jié)果,估計2014年該地區(qū)10萬名大、中、小學生中,50米跑成績合格的中學生人數(shù)為   名;

3)比較2010年與2014年抽樣學生50米跑成績合格率情況,寫出一條正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別是(-3,0),(0,6),動點P從點O出發(fā),沿x軸正方向以每秒1個單位的速度運動,同時動點C從點B出發(fā),沿射線BO方向以每秒2個單位的速度運動.以CP,CO為鄰邊構(gòu)造PCOD.在線段OP延長線上一動點E,且滿足PEAO.

(1)當點C在線段OB上運動時,求證:四邊形ADEC為平行四邊形;

(2)當點P運動的時間為秒時,求此時四邊形ADEC的周長是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果拋物線C: y=ax2+bx+c(a≠0)與直線l:y=kx+d(k≠0)都經(jīng)過y軸上一點P,且拋物線C的頂點Q在直線l上,那么稱此直線l與該拋物線C具有“一帶一路”關(guān)系.如果直線y=mx+1與拋物線y=x2-2x+n具有“一帶一路”關(guān)系,那么m+n=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ACD,∠ACD=90°,AC=,分別以邊AD,ACCD為直徑面半圖,所得兩個月形圖案AGCEDHCF的面積之和(圖中陰影部分)_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,以直線MN上的線段BC為邊作正方形ABCD,CH平分∠DCN,點E為射線BN上一點,連接AE,過點EAE的垂線交射線CH于點F,探索AEEF的數(shù)量關(guān)系。

(1)閱讀下面的解答過程。并按此思路完成余下的證明過程

當點E在線段BC上,且點EBC中點時,AB=EF

理由如下:

AB中點P,達接PE

在正方形ABCD中,∠B=BCD=90°AB=BC

∴△BPE等腰三角形,AP=BC

∴∠BPB=45°

∴∠APBE=135°

又因為CH平分∠DCN

∴∠DCF=45°

∴∠ECF=135°

∴∠APE=ECF

余下正明過程是:

(2)當點E為線段AB上任意一點時,如圖2,結(jié)論“AE=EF”是否成立,如果成立,請給出證明過程;

(3)當點EBC的延長線時,如圖3,結(jié)論“AE=EF”是否仍然成立,如果成立,請在圖3中畫出必要的輔助線(不必說明理由)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將n個邊長都為2的正方形按如圖所示擺放,點A1,A2,…An分別是正方形的中心,則這n個正方形重疊部分的面積之和是( 。

A.nB.n1C.D. n

查看答案和解析>>

同步練習冊答案