【題目】如圖,將ABCD沿EF對折,使點A落在點C處,若∠A=60°,AD=4,AB=8,則AE的長為 .
【答案】
【解析】解:過點C作CG⊥AB的延長線于點G, 在ABCD中,
∠D=∠EBC,AD=BC,∠A=∠DCB,
由于ABCD沿EF對折,
∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,
D′C=AD=BC,
∴∠D′CF+∠FCE=∠FCE+∠ECB,
∴∠D′CF=∠ECB,
在△D′CF與△ECB中,
∴△D′CF≌△ECB(ASA)
∴D′F=EB,CF=CE,
∵DF=D′F,
∴DF=EB,AE=CF
設(shè)AE=x,
則EB=8﹣x,CF=x,
∵BC=4,∠CBG=60°,
∴BG= BC=2,
由勾股定理可知:CG=2 ,
∴EG=EB+BG=8﹣x+2=10﹣x
在△CEG中,
由勾股定理可知:(10﹣x)2+(2 )2=x2 ,
解得:x=AE=
所以答案是:
【考點精析】本題主要考查了平行四邊形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,下列結(jié)論:①△DFE是等腰直角三角形;②四邊形CEDF的周長不變;③點C到線段EF的最大距離為1.其中正確的結(jié)論有 . (填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點F.點E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)前夕,在東昌湖舉行第七屆全民健身運動會龍舟比賽中,甲、乙兩隊在500米的賽道上,所劃行的路程y(m)與時間x(min)之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是( )
A.乙隊比甲隊提前0.25min到達終點
B.當乙隊劃行110m時,此時落后甲隊15m
C.0.5min后,乙隊比甲隊每分鐘快40m
D.自1.5min開始,甲隊若要與乙隊同時到達終點,甲隊的速度需要提高到255m/min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】首條貫通絲綢之路經(jīng)濟帶的高鐵線﹣﹣寶蘭客專進入全線拉通試驗階段,寶蘭客專的通車對加快西北地區(qū)與“一帶一路”沿線國家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義,試運行期間,一列動車從西安開往西寧,一列普通列車從西寧開往西安,兩車同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象進行一下探究:
(1)西寧到西安兩地相距千米,兩車出發(fā)后小時相遇;
(2)普通列車到達終點共需小時,普通列車的速度是千米/小時.
(3)求動車的速度;
(4)普通列車行駛t小時后,動車到達終點西寧,求此時普通列車還需行駛多少千米到達西安?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.
(1)當速度為50km/h、100km/h時,該汽車的耗油量分別為L/km、 L/km.
(2)求線段AB所表示的y與x之間的函數(shù)表達式.
(3)速度是多少時,該汽車的耗油量最低?最低是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC,△EFG均是邊長為2的等邊三角形,點D是邊BC、EF的中點,直線AG、FC相交于點M.當△EFG繞點D旋轉(zhuǎn)時,點M運動的路徑長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y= x+1與x軸交于點A,且與雙曲線y= 的一個交點為B( ,m).
(1)求點A的坐標和雙曲線y= 的表達式;
(2)若BC∥y軸,且點C到直線y= x+1的距離為2,求點C的縱坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com