【題目】已知,,三點在數(shù)軸上的位置如圖所示,它們表示的數(shù)分別是,,.
(1)填空:______0,______0:(填“>”,“=”或“<”)
(2)若且點到點,的距離相等,
①當時,求的值.
②是數(shù)軸上,兩點之間的一個動點,設點表示的數(shù)為,當點在運動過程中,的值保持不變,則的值為______.
【答案】(1),;(2)①c的值為10;②3.
【解析】
(1)先根據(jù)數(shù)軸的定義得出的取值范圍,再根據(jù)有理數(shù)的加法、乘法法則即可得;
(2)①先根據(jù)數(shù)軸的定義求出b的值,再根據(jù)數(shù)軸兩點間的距離可得c的值;
②根據(jù)點P的位置得出x的取值范圍,再去絕對值,然后根據(jù)“值保持不變”得出關于b和c的等式,再結合“點到點,的距離相等”,聯(lián)立求解即可.
(1)由數(shù)軸的定義得:
則
故答案為:,;
(2)①
,點到點,的距離相等
,即
故c的值為10;
②由題意得:
由(1)可知,因此
則
當點在運動過程中,要使的值保持不變
則即
又,點到點,的距離相等
,即,整理得
聯(lián)立,解得
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為“快樂分式”.如:,則 是“快樂分式”.
(1)下列式子中,屬于“快樂分式”的是 (填序號);
① ,② ,③ ,④ .
(2)將“快樂分式”化成一個整式與一個分子為常數(shù)的分式的和的形式為: = .
(3)應用:先化簡 ,并求x取什么整數(shù)時,該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.
(1)按要求填空:
①你認為圖②中的陰影部分的正方形的邊長等于 ;
②請用兩種不同的方法表示圖②中陰影部分的面積:
方法1: ;
方法2: ;
③觀察圖②,直接寫出三個代數(shù)式(m+n)2,(m﹣n)2, mn之間的等量關系: ;
(2)根據(jù)(1)題中的等量關系,解決如下問題:若m+n=6,mn=4,求(m﹣n)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為邊AB的中點,將△CBE沿CE翻折得到△CFE,連接AF,若∠EAF=70°,那么∠BCF=______度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線l:y=﹣x2+bx+c(b,c為常數(shù)),其頂點E在正方形ABCD內(nèi)或邊上,已知點A(1,2),B(1,1),C(2,1).
(1)直接寫出點D的坐標_____________;
(2)若l經(jīng)過點B,C,求l的解析式;
(3)設l與x軸交于點M,N,當l的頂點E與點D重合時,求線段MN的值;當頂點E在正方形ABCD內(nèi)或邊上時,直接寫出線段MN的取值范圍;
(4)若l經(jīng)過正方形ABCD的兩個頂點,直接寫出所有符合條件的c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=5,BC=3,點D、E分別在BC、AC上,且BD=CE,設點C關于DE的對稱點為F,若DF∥AB,則BD的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.
(1)當a=-1,b=1時,求拋物線n的解析式;
(2)四邊形AC1A1C是什么特殊四邊形,請寫出結果并說明理由;
(3)若四邊形AC1A1C為矩形,請求出a,b應滿足的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD 交 BC于點 D,過點 D 作 DE⊥AD 交 AB 于點 E,以 AE 為直徑作⊙O.
(1)求證:BC 是⊙O 的切線;
(2)若 AC=3,BC=4,求 BE 的長.
(3)在(2)的條件中,求 cos∠EAD 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com