【題目】(1)觀察猜想
如圖(1),在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn).以點(diǎn)D為頂點(diǎn)作正方形DEFG,使點(diǎn)A,C分別在DG和DE上,連接AE,BG,則線(xiàn)段BG和AE的數(shù)量關(guān)系是_____;
(2)拓展探究
將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖2,則(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題
若BC=DE=2,在(2)的旋轉(zhuǎn)過(guò)程中,當(dāng)AE為最大值時(shí),直接寫(xiě)出AF的值.
【答案】(1)BG=AE.
(2)成立.
如圖②,
連接AD.∵△ABC是等腰三直角角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故當(dāng)BG最大時(shí),AE也最大.
正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)270°時(shí),BG最大,如圖③.
若BC=DE=2,則AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如圖②,連接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故當(dāng)BG最大時(shí),AE也最大.Z+X+X+K]
因?yàn)檎叫?/span>DEFG在繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中,G點(diǎn)運(yùn)動(dòng)的圖形是以點(diǎn)D為圓心,DG為半徑的圓,故當(dāng)正方形DEFG旋轉(zhuǎn)到G點(diǎn)位于BC的延長(zhǎng)線(xiàn)上(即正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)270°)時(shí),BG最大,如圖③.
若BC=DE=2,則AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋轉(zhuǎn)過(guò)程中,當(dāng)AE為最大值時(shí),AF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,若點(diǎn)滿(mǎn)足,,那么稱(chēng)點(diǎn)是點(diǎn),的融合點(diǎn).
例如:,,當(dāng)點(diǎn)滿(mǎn)是,時(shí),則點(diǎn)是點(diǎn),的融合點(diǎn),
(1)已知點(diǎn),,,請(qǐng)說(shuō)明其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的融合點(diǎn).
(2)如圖,點(diǎn),點(diǎn)是直線(xiàn)上任意一點(diǎn),點(diǎn)是點(diǎn),的融合點(diǎn).
①試確定與的關(guān)系式.
②若直線(xiàn)交軸于點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為的正方形放在平面直角坐標(biāo)系第二象限,使邊落在軸負(fù)半軸上,且點(diǎn)的坐標(biāo)是.
(1)直線(xiàn)經(jīng)過(guò)點(diǎn),且與軸交于點(diǎn),求四邊形的面積;
(2)若直線(xiàn)經(jīng)過(guò)點(diǎn),且將正方形分成面積相等的兩部分,求直線(xiàn)的解析式;
(3)若直線(xiàn)經(jīng)過(guò)點(diǎn)且與直線(xiàn)平行.將(2)中直線(xiàn)沿著軸向上平移個(gè)單位,交軸于點(diǎn),交直線(xiàn)于點(diǎn),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于x的一元二次方程的解為_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線(xiàn)的頂點(diǎn),點(diǎn)E在拋物線(xiàn)上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3.
(1)求拋物線(xiàn)所對(duì)應(yīng)的函數(shù)解析式.
(2)若點(diǎn)P為拋物線(xiàn)對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),求PAC周長(zhǎng)的最小值.
(3)將AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)G,問(wèn)點(diǎn)G是否在該拋物線(xiàn)上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】因?yàn)橐淮魏瘮?shù)與的圖象關(guān)于軸對(duì)稱(chēng),所以我們定義:函數(shù)與互為“鏡子”函數(shù).
(1)請(qǐng)直接寫(xiě)出函數(shù)的“鏡子”函數(shù):________.
(2)如圖,一對(duì)“鏡子”函數(shù)與的圖象交于點(diǎn),分別與軸交于兩點(diǎn),且AO=BO,△ABC的面積為,求這對(duì)“鏡子”函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD沿著直線(xiàn)BD折疊,使點(diǎn)C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長(zhǎng)=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AD=6,AB=10,∠A=30°,以點(diǎn)A為圓心,AD的長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)E,連接CE.
(1)求弧DE的長(zhǎng);
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
請(qǐng)說(shuō)明對(duì)于任意實(shí)數(shù)方程總有兩個(gè)不相等的實(shí)數(shù)根;
若方程兩實(shí)數(shù)根為,,且滿(mǎn)足,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com