【題目】如圖,已知△ABC,請(qǐng)用直尺(不帶刻度),和圓規(guī),按下列要求作圖(不要求寫(xiě)作法,但要保留作圖痕跡).
(1)作菱形AMNP,使點(diǎn)M,N、P在邊AB、BC、CA上;
(2)當(dāng)∠A=60°,AB=8,AC=6時(shí),求菱形AMNP的面積.
【答案】(1)詳見(jiàn)解析;(2)
【解析】
(1)作∠BAC的角平分線交BC于N,作線段AN的垂直平分線交AC于點(diǎn)P,交AB于點(diǎn)M,連接MN,PN,四邊形AMNP是菱形.
(2)如圖,作CF⊥AN于F,BE⊥AN于E.想辦法求出AN,PM即可.
解:(1)菱形AMNP如圖所示.
(2)如圖,作CF⊥AN于F,BE⊥AN于E.
在Rt△ACF中, 菱形,
∠CAF=30°,
∵∠AFC=90°,AC=6,
∴CF=3,
同法可得:BE=4,
∴EF=AE-AF=,
∵CF∥BE,
∴
∴EN=EF=
∴AN=AE-EN=
菱形,
且與互相平分,
∴S菱形AMNP=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)E是BC的中點(diǎn),過(guò)點(diǎn)B作BG⊥AE于點(diǎn)G,過(guò)點(diǎn)C作CF垂直BG的延長(zhǎng)線于點(diǎn)H,交AD于點(diǎn)F
(1)求證:△ABG≌△BCH;
(2)如圖2,連接AH,連接EH并延長(zhǎng)交CD于點(diǎn)I;
求證:① AB2=AE·BH;② 求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過(guò)E作EF∥AC交BA的延長(zhǎng)線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)某班組織班級(jí)聯(lián)歡會(huì),最后進(jìn)入抽獎(jiǎng)環(huán)節(jié),每名同學(xué)都有一次抽獎(jiǎng)機(jī)會(huì).抽獎(jiǎng)方案如下:將一副撲克牌中點(diǎn)數(shù)為“2”、“3”、“3”、“5”、“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再?gòu)挠嘞碌?/span>4張牌中抽出1張牌,記錄兩張牌點(diǎn)數(shù)后放回,完成一次抽獎(jiǎng).記每次抽出兩張牌點(diǎn)數(shù)之差為,按下表要求確定獎(jiǎng)項(xiàng).
獎(jiǎng)項(xiàng) | 一等獎(jiǎng) | 二等獎(jiǎng) | 三等獎(jiǎng) |
(1)用列表法或畫(huà)樹(shù)狀圖的方法求出甲同學(xué)獲二等獎(jiǎng)的概率;
(2)判斷是否每次抽獎(jiǎng)都會(huì)獲獎(jiǎng)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),它的對(duì)稱(chēng)軸與軸交于點(diǎn),直線經(jīng)過(guò),兩點(diǎn),連接.
(1)求,兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式;
(2)探索直線上是否存在點(diǎn),使為直角三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(3)若點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),試探究在拋物線上是否存在點(diǎn):
①使以點(diǎn),,,為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
②使以點(diǎn),,,為頂點(diǎn)的四邊形為矩形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學(xué)在校外實(shí)踐活動(dòng)中對(duì)此開(kāi)展測(cè)量活動(dòng).如圖,在橋外一點(diǎn)A測(cè)得大橋主架與水面的交匯點(diǎn)C的俯角為α,大橋主架的頂端D的仰角為β,已知測(cè)量點(diǎn)與大橋主架的水平距離AB=a,則此時(shí)大橋主架頂端離水面的高CD為( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知.兩組發(fā)言人數(shù)的比為,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題:
發(fā)言次數(shù) | |
(1)求出樣本容量,并補(bǔ)全直方圖;
(2)該年級(jí)共有學(xué)生1500人,請(qǐng)估計(jì)全年級(jí)在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知組發(fā)言的學(xué)生中恰有1位男生,組發(fā)言的學(xué)生中有2位女生.現(xiàn)從組與組中分別抽一位學(xué)生寫(xiě)報(bào)告,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在邊BC上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過(guò)點(diǎn)A,過(guò)點(diǎn)A作直線AD,使∠CAD=2∠B.
(1)判斷直線AD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OB=4,∠CAD=60°,請(qǐng)直接寫(xiě)出圖中弦AB與圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技公司研發(fā)出一款多型號(hào)的智能手表,一家代理商出售該公司的型智能手表,去年銷(xiāo)售總額為80000元,今年型智能手表的售價(jià)每只比去年降了600元,若今年售出的數(shù)量與去年相同的情況下,今年的銷(xiāo)售總額將比去年減少.
(1)求今年型智能手表每只售價(jià)多少元?
(2)今年這家代理商準(zhǔn)備新進(jìn)一批型智能手表和型智能手表共100只,它們的進(jìn)貨價(jià)與銷(xiāo)售價(jià)格如下表所示,若型智能手表進(jìn)貨量不超過(guò)型智能手表進(jìn)貨量的3倍,所進(jìn)智能手表可全部售完,請(qǐng)你設(shè)計(jì)出進(jìn)貨方案,使這批智能手表獲利最多,并求出最大利潤(rùn)是多少元?
型智能手表 | 型智能手表 | |
進(jìn)價(jià) | 1300元/只 | 1500元/只 |
售價(jià) | 今年的售價(jià) | 2300元/只 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com