【題目】甲、乙兩人在筆直的公路上問起點、同終點、同方向勻速步行2400米,先到終點的人原地體息已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時向t(分)之間的函數(shù)關系如圖所示,下列說法中正確的是( 。

A. 甲步行的速度為8/

B. 乙走完全程用了34分鐘

C. 乙用16分鐘追上甲

D. 乙到達終點時,甲離終點還有360

【答案】D

【解析】

根據題意和函數(shù)圖象中的數(shù)據可以判斷各個小題中的結論是否正確,從而可以解答本題.

解:由圖可得,

甲步行的速度為:240÷460/分,故選項A不合題意,

乙走完全程用的時間為:2400÷16×60÷12)=30(分鐘),故選項B不合題意,

乙追上甲用的時間為:16412(分鐘),故選項C不合題意,

乙到達終點時,甲離終點距離是:2400﹣(4+30×60360米,故選項D符合題意,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為改善教學條件,學校準備對現(xiàn)有多媒體設備進行升級改造,已知購買3個鍵盤和1個鼠標需要190元;購買2個鍵盤和3個鼠標需要220元;

1)求鍵盤和鼠標的單價各是多少元?

2)經過與經銷商洽談,鍵盤打八折,鼠標打八五折.若學校計劃購買鍵盤和鼠標共50件,且總費用不超過1820元,則最多可購買鍵盤多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某軟件科技公司20人負責研發(fā)與維護游戲、網購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護人數(shù)的扇形統(tǒng)計圖和利潤的條形統(tǒng)計圖.

根據以上信息,網答下列問題

(1)直接寫出圖中a,m的值;

(2)分別求網購與視頻軟件的人均利潤;

(3)在總人數(shù)和各款軟件人均利潤都保持不變的情況下,能否只調整網購與視頻軟件的研發(fā)與維護人數(shù),使總利潤增加60萬元?如果能,寫出調整方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+cx軸交于A(﹣10B3,0)兩點,與y軸交于點C

1)求拋物線y=ax2+2x+c的解析式:;

2)點D為拋物線上對稱軸右側、x軸上方一點,DEx軸于點EDFAC交拋物線對稱軸于點F,求DE+DF的最大值;

3)①在拋物線上是否存在點P,使以點AP,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;

②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經過點 ,與軸交于另一點,頂點為

1)求拋物線的解析式,并寫出點的坐標;

2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;

3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的中線,點EAD的中點,連接BE,過點ABC的平行線交BE的延長線于點F,連接CF

1)求證:AFDC;

2)在不添加任何輔助線的情況下,請直接寫出圖中四個三角形,使寫出的每個三角形的面積等于AEF面積的2倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=-x2+1,下列結論:
①拋物線開口向上;
②拋物線與x軸交于點(-1,0)和點(1,0);
③拋物線的對稱軸是y軸;
④拋物線的頂點坐標是(0,1);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個單位得到的.
其中正確的個數(shù)有(

A. 5B. 4C. 3

D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10個人圍成一個圓圈做游戲.游戲的規(guī)則是:每個人心里都想好一個數(shù),并把自己想好的數(shù)如實地告訴他兩旁的兩個人,然后每個人將他兩旁的兩個人告訴他的數(shù)的平均數(shù)報出來.若報出來的數(shù)如圖所示,則報3的人心里想的數(shù)是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,DAC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=ABC

1)求證:PA是⊙O的切線;

2)證明:

3)若BC=8,tanAFP=,求DE的長.

查看答案和解析>>

同步練習冊答案