【題目】完成下面的證明過程

如圖,已知∠1+∠2=180°,∠B=∠DEF,求證:DE∥BC.

證明:∵∠1+∠2=180°(已知),

∠2=∠3________

∴∠1+∠3=180°

____________________

∴∠B=______________

∵∠B=∠DEF(已知)

∴∠DEF=______(等量代換)

∴DE∥BC________

【答案】對頂角相等 EF AB 同旁內(nèi)角互補,兩直線平行 ∠CFE 兩直線平行,同位角相等 ∠CFE 兩直線平行

【解析】

先由對頂角相等可得:∠2=3,然后由∠1+2=180°,根據(jù)等量代換可得:∠1+3=180°,然后根據(jù)同旁內(nèi)角互補兩直線平行可得:EFAB,然后根據(jù)兩直線平行同位角相等可得:∠B=CFE,然后由∠B=DEF,根據(jù)等量代換可得:∠CFE=DEF,然后根據(jù)內(nèi)錯角相等兩直線平行即可得到:DEBC.

證明:∵∠1+2=180°(已知),

而∠2=3(對頂角相等),

∴∠1+3=180°

EFAB(同旁內(nèi)角互補,兩直線平行)

∴∠B=CFE(兩直線平行,同位角相等)

∵∠B=DEF(已知)

∴∠DEF=CFE(等量代換)

DEBC(內(nèi)錯角相等,兩直線平行).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動點P在函數(shù)y= (x>0)的圖象上運動,PM⊥x軸于點M,PN⊥y軸于點N,線段PM、PN分別與直線AB:y=﹣x+1交于點E,F(xiàn),則AFBE的值為( )

A.4
B.2
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點P,且∠D+C=200°,則∠P=( )

A. 10 ° B .20 ° C .30° D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(
A.a>0
B.3是方程ax2+bx+c=0的一個根
C.a+b+c=0
D.當x<1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BCOABA100°,試回答下列問題:

(1)如圖①所示,試說明OBAC;

(2)如圖②,若點E,FBC上,且滿足∠FOCAOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于________(在橫線上填上答案即可);

(3)(2)的條件下,若平行移動AC,如圖③,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;

(4)(3)的條件下,在平行移動AC的過程中,若使∠OEBOCA,此時∠OCA的度數(shù)等于________(在橫線上填上答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為60°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為45°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度為 (即tan∠PCD= ).

(1)求該建筑物的高度(即AB的長).
(2)求此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM停止平移時,點Q也停止移動,如圖②,設(shè)移動時間為t(s)(0<t<4).連接PQ、MQ、MC.

(1)當t為何值時,PQ∥AB?
(2)當t=3時,求△QMC的面積;
(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系,A(-2,0),B(0,3),M在直線y=x 上,且SΔMAB=6,則點M的坐標為_____.

查看答案和解析>>

同步練習冊答案