【題目】如圖1,拋物線yax2+bx+cx軸交于點A(10)、B(30),與y軸交于點C(0,﹣3).

(1)求拋物線的解析式;

(2)拋物線上是否存在一點P,使得∠APB=∠ACO成立?若存在,求出點P的坐標(biāo):若不存在,請說明理由.

(3)我們規(guī)定:對于直線l1yk1x+b,直線l2yk2x+b2,若直線k1k2=﹣1,則直線l1l2;反過來也成立.請根據(jù)這個規(guī)定解決下列可題:

如圖2,將該拋物線向上平移過原點與直線ykx(k0)另交于C.T為該二次函數(shù)圖象上位于直線OC下方的動點,過點T作直線TMOC′,重足為點M,且M在線段OC′(不與O、C′重合),過點T作直線TNy軸交OC'于點N.若在點T運動的過程中,為常數(shù),試確定k的值.

【答案】(1)yx22x3;(2)存在,點P(,(,﹣);(3)k.

【解析】

(1)拋物線的表達式為:ya(x+1)(x3)a(x22x3),即可求解;

(2)分點Px軸上方、點Px軸下方兩種情況,分別求解即可;

(3)OMONm,即可求解.

解:(1)拋物線的表達式為:ya(x+1)(x3)a(x22x3),

即﹣3a=﹣3,解得:a1

故拋物線的表達式為:yx22x3…①;

(2)tan∠APBtan∠ACO

當(dāng)點Px軸上方時,

則直線BP的表達式為:y=﹣x+1…②,

聯(lián)立①②并解得:x3(舍去)或﹣,故點P(,);

當(dāng)點Px軸下方時,

同理可得:點P(,﹣);

綜上,點P(,(,﹣)

(3)設(shè)點T(m,m22m),直線ON的表達式為:ykx…③,

∵TM⊥OC,則直線TM為:y=﹣x+b

將點T的坐標(biāo)代入上式并解得:

直線TM的表達式為:y=﹣x+(m22m+)…④,

聯(lián)立③④并解得:x,y

OM,ONm,

,

當(dāng)k時,為常數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,CD、BE分別是△ABC的角平分線,AGBC,AGBG,下列結(jié)論:①∠BAG2ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB135°,其中正確的結(jié)論有( 。﹤

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國際合作高峰壇在北京行,本屆壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實國務(wù)院的指示精神,某地方政府出臺了一系列三農(nóng)優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.

1)求wx之間的函數(shù)關(guān)系式.

2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?

3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,∠ACB90°,ACBC4.DAB的中點,P是平面上的一點,且DP1,連接BP、CP,將點B繞點P順時針旋轉(zhuǎn)90°得到點B′,連CB′CB′的最大值是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,b是常數(shù),且≠0)與x軸交于A,B兩點,與y軸交于點C.并且A,B兩點的坐標(biāo)分別是A(10),B(30)

1)①求拋物線的解析式;②頂點D的坐標(biāo)為_______;③直線BD的解析式為______;

2)若P為線段BD上的一個動點,其橫坐標(biāo)為m,過點PPQx軸于點Q,求當(dāng)m為何值時,四邊形PQOC的面積最大?

3)若點M是拋物線在第一象限上的一個動點,過點MMNAC軸于點N.當(dāng)點M的坐標(biāo)為_______時,四邊形MNAC是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過點A(3,0),點C(03),點D為二次函數(shù)的頂點,DE為二次函數(shù)的對稱軸,點Ex軸上.

1)求拋物線的解析式及頂點D的坐標(biāo);

2)在拋物線A、C兩點之間有一點F,使FAC的面積最大,求F點坐標(biāo);

3)直線DE上是否存在點P到直線AD的距離與到x軸的距離相等?若存在,請求出點P,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD,BAD=60°,AC=12,E是線段AD延長線上一點,過點A,C,E作直角三角形,AE的長度是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過點(1,0).

(1)當(dāng),時,求二次函數(shù)的解析式及二次函數(shù)最小值;

(2)二次函數(shù)的圖像經(jīng)過點(,),(,).若對任意實數(shù),函數(shù)值都不小于,求此時二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案