【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正確的結(jié)論有( 。﹤
A.1B.2C.3D.4
【答案】C
【解析】
由已知條件可知∠ABC+∠ACB=90°,又因?yàn)?/span>CD、BE分別是△ABC的角平分線,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行線的性質(zhì)可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知選項(xiàng)①③④正確.
∵AB⊥AC.
∴∠BAC=90°,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=90°
∵CD、BE分別是△ABC的角平分線,
∴2∠FBC+2∠FCB=90°
∴∠FBC+∠FCB=45°
∴∠BFC=135°故④正確.
∵AG∥BC,
∴∠BAG=∠ABC
∵∠ABC=2∠ABF
∴∠BAG=2∠ABF 故①正確.
∵AB⊥AC,
∴∠ABC+∠ACB=90°,
∵AG⊥BG,
∴∠ABG+∠GAB=90°
∵∠BAG=∠ABC,
∴∠ABG=∠ACB 故③正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了100 m,此時自B處測得建筑物頂部的仰部角是45°.已知測角儀的高度是1.5 m,請你計(jì)算出該建筑物的高度.(取≈1.732,結(jié)果精確到1 m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你知道數(shù)學(xué)中的整體思想嗎?解題中,若把注意力和著眼點(diǎn)放在問題的整體上,多方位思考、聯(lián)想、探究,進(jìn)行整體思考、整體加減,能使問題迅速獲解.
例題:已知x2+xy=4,xy+y2=-1.求代數(shù)式x2-y2的值.
解:將兩式相減,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;請用整體思想解答下列問題:
(1)在例題的基礎(chǔ)上求(x+y)2的值;
(2)若關(guān)于x、y的二元一次方程組的解也是二元一次方程x+y=6的解,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暴雨過后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn). 半小時后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問兩隊(duì)的平均速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB∥CD,點(diǎn)P在兩平行線之間,點(diǎn)E. F分別在AB、CD上,連接PE,PF.嘗試探究并解答:
(1)若圖1中∠1=36°,∠2=63°,則∠3=___;
(2)探究圖1中∠1,∠2與∠3之間的數(shù)量關(guān)系,并說明理由;
(3)如圖2所示,∠1與∠3的平分線交于點(diǎn)P`,若∠2=α,試求∠EP`F的度數(shù)(用含α的代數(shù)式表示);
(4)如圖3所示,在圖2的基礎(chǔ)上,若∠BEP與∠DFP的平分線交于點(diǎn)P,∠BEP與∠DFP的平分線交于點(diǎn)P…∠BEP 與∠DFP的平分線交于點(diǎn)P,且∠2=α,直接寫出∠EPF的度數(shù)(用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且OC=3OA.
(1)求拋物線的函數(shù)表達(dá)式;
(2)直接寫出直線BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個單位的速度沿x軸的正方向移動,在運(yùn)動過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點(diǎn)P(1,k)在直線BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請直接寫出M點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織植樹活動,按年級將七、八、九年級學(xué)生分成三個植樹隊(duì),七年級植樹x棵,八年級種的數(shù)比七年級種的數(shù)的2倍少26棵,九年級種的樹比八年級種的樹的一半多42棵.
(1)請用含x的式子表示三個隊(duì)共種樹多少棵.
(2)若這三個隊(duì)共種樹423棵,請你求出這三隊(duì)各種了多少棵樹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,D是等邊△ABC外一點(diǎn),且AD=AC,連接BD,∠CAD的角平分交BD于E.
(1)求證:∠ABD=∠D;
(2)求∠AEB的度數(shù);
(3)△ABC 的中線AF交BD于G(如圖2),若BG=DE,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖,當(dāng)點(diǎn)E在BD上時.求證:FD=CD;
(2)當(dāng)α為何值時,GC=GB?畫出圖形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com