【題目】某班數(shù)學(xué)課外活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處測得樹頂端D的仰角為60°,已知A點的高度AB為2米,臺階AC的坡度i=1:2,且B,C,E三點在同一條直線上,請根據(jù)以上條件求出樹DE的高度.(測傾器的高度忽略不計,結(jié)果保留根號)
【答案】解:過點A作AF⊥DE,設(shè)DF=x, 在Rt△ADF中,∵∠DAF=30°,tan∠DAF= = ,
∴AF= x,
AC的坡度i=1:2,
∴ = ,
∵AB=2,
∴BC=4,
∵AB⊥BC,DE⊥CE,AF⊥DE,
∴四邊形ABEF為矩形,
∴EF=AB=2,BE=AF,
∴DE=DF+EF=x+2,
在Rt△DCE中,tan∠DCE= ,
∵∠DCE=60°,
∴CE= (x+2),
∵EB=BC+CE= (x+2),
∴ (x+2)+4= x,
∴x=1+2 ,
∴DE=3+2 .
【解析】首先表示出AF的長,進而得出BC的長,再表示出CE= (x+2),利用EB=BC+CE求出答案.
【考點精析】本題主要考查了關(guān)于坡度坡角問題和關(guān)于仰角俯角問題的相關(guān)知識點,需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA;仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了切實關(guān)注、關(guān)愛貧困家庭學(xué)生,某校對全校各班貧困家庭學(xué)生的人數(shù)情況進行了統(tǒng)計,以便國家精準扶貧政策有效落實.統(tǒng)計發(fā)現(xiàn)班上貧困家庭學(xué)生人數(shù)分別有2名、3名、4名、5名、6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計圖:
(1)求該校一共有多少個班?并將條形圖補充完整;
(2)某愛心人士決定從2名貧困家庭學(xué)生的這些班級中,任選兩名進行幫扶,請用列表法或樹狀圖的方法,求出被選中的兩名學(xué)生來自同一班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 在平面直角坐標系中的位置如圖所示.
(1)作關(guān)于點成中心對稱的 .
(2)將向右平移4個單位,作出平移后的.
(3)在軸上求作一點,使的值最小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點G是BC的中點時,求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個村莊A、B在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送自來水.鋪設(shè)水管的工程費用為每千米20000元,請你在CD上選擇水廠位置O,使鋪設(shè)水管的費用最省,并求出鋪設(shè)水管的總費用W.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求完成下列證明:
已知:如圖,AB∥CD,直線AE交CD于點C,∠BAC+∠CDF=180°.
求證:AE∥DF.
證明: ∵AB∥CD(____________________________) ,
∴∠BAC=∠DCE(__________________________________________________________________________).
∵∠BAC+∠CDF=180°(已知),
∴____________ +∠CDF=180°(____________________________________).
∴AE∥DF(______________________________________________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果基地計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.
甲 | 乙 | 丙 | |
每輛汽車能裝的數(shù)量(噸) | 4 | 2 | 3 |
每噸水果可獲利潤(千元) | 5 | 7 | 4 |
(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?
(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)
(3)在(2)問的基礎(chǔ)上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點C′處;作∠BPC′的角平分線交AB于點E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com