如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.

 

1.求證:直線PB與⊙O相切;

2.PO的延長(zhǎng)線與⊙O交于點(diǎn)E,若⊙O的半徑為3,PC=4,求CE的長(zhǎng).

 

【答案】

 

1.見解析。

2.

【解析】解:過O作OM垂直BP于M,連接OC。

∵⊙O與PA相切于點(diǎn)C.

∴ON垂直CP

∵點(diǎn)O在∠APB的平分線上,

∴OC=ON

∴直線PB與⊙O相切;

(2)由題意可得:OE=3,PC=4   

 連接OC,過C作CH垂直于PO

因?yàn)閳Ao與PA相切于點(diǎn)c,

  所以∠OCP=90°

  因?yàn)镺E=OC=3,PC=4 , ∠OCP=90°

所以PO=5

有面積法可得CH=12/5

在Rt△OCH中,由勾股定理得到OH=9/5               

所以EH=24/5  

RT三角形CEH中,由勾股定理得到CE=

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.
(1)求證:直線PB與⊙O相切;
(2)PO的延長(zhǎng)線與⊙O交于點(diǎn)E.若⊙O的半徑為3,PC=4.求弦CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA邊相切于點(diǎn)C,
(1)求證:PB是⊙O的切線;
(2)PO的延長(zhǎng)線交⊙O于E,EA⊥PA于A.設(shè)PE交⊙O于另一點(diǎn)G,AE交⊙O于點(diǎn)F,連接FG,若⊙O的半徑是3,
AC
AE
=
1
2

①求弦CE的長(zhǎng);②求
FG
PA
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.
(1)求證:直線PB也與⊙O相切;
(2)又PO的延長(zhǎng)線與⊙O交于點(diǎn)Q,若⊙O的半徑為3,PC=4,求△PCQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.

 

1.求證:直線PB與⊙O相切;

2.PO的延長(zhǎng)線與⊙O交于點(diǎn)E,若⊙O的半徑為3,PC=4,求CE的長(zhǎng).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案