【題目】如圖,AOOM,OA=8,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB、AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點(diǎn)的運(yùn)動(dòng)而變化
【答案】B
【解析】
作輔助線,首先證明△ABO≌△BEN,得到BO=ME;進(jìn)而證明△BPF≌△MPE,即可解決問題.
如圖,過點(diǎn)E作EN⊥BM,垂足為點(diǎn)N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE,
∵△ABE、△BFO均為等腰直角三角形,
∴AB=BE,BF=BO;
在△ABO與△BEN中,
∴△ABO≌△BEN(AAS),
∴BO=NE,BN=AO;
∵BO=BF,
∴BF=NE,
在△BPF與△NPE中,
∴△BPF≌△NPE(AAS),
∴BP=NP=BN;而BN=AO,
∴BP=AO=×8=4,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.
(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是∠ABC平分線,DEAB于E,AB=36cm,BC=24cm,S△ABC =144cm2,則DE的長是( )
A. 4.8cm B. 4.5cm C. 4 cm D. 2.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖①,在△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l的同側(cè),,垂足分別為.求證:△AEC≌△CDB.
(2)類比探究:如圖②,在Rt△ABC中,∠ACB=90°,AC=4,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB,,連接CB,,求△ACB,的面積.
(3)拓展提升:如圖③,在△EBC中,∠E=∠ECB=60°,EC=BC=3,點(diǎn)O在BC上,且OC=2,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC以每秒1個(gè)單位長度的速度運(yùn)動(dòng),連接OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn) F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,向一個(gè)半徑為R、容積為V的球形容器內(nèi)注水,則能夠反映容器內(nèi)水的體積y與容器內(nèi)水深x間的函數(shù)關(guān)系的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長交BA的延長線于點(diǎn)F,交AD于點(diǎn)E.
(1)求證:AG=CG.
(2)求證:AG2=GEGF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com