【題目】如圖,點A是⊙O直徑BD延長線上的一點,C在⊙O上,AC=BC,AD=CD
(1)求證:AC是⊙O的切線;
(2)若⊙O的半徑為4,求△ABC的面積.
【答案】(1)、證明過程見解析;(2)、12
【解析】
試題分析:(1)、連接OC,根據(jù)AC=BC,AD=CD,OB=OC得出∠A=∠B=∠1=∠2,根據(jù)BD為直徑得出∠BCD=90°,從而說明∠ACO=90°,得出切線;(2)、首先根據(jù)題意得出△DCO是等邊三角形,根據(jù)Rt△BCD的勾股定理得出BC的長度,作CE⊥AB于點E,然后根據(jù)Rt△BEC的勾股定理得出CE的長度,然后求出△ABC的面積.
試題解析:(1)、如圖,連接OC. ∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.
又∵BD是直徑, ∴∠BCD=90°,∵∠ACO=∠DCO+∠2, ∴∠ACO=∠DCO+∠1=∠BCD,
∴∠ACO=90°, 又C在⊙O上, ∴AC是⊙O的切線;
(2)、由題意可得△DCO是等腰三角形, ∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,
∴∠CDO=∠DOC,即△DCO是等邊三角形. ∴∠A=∠B=∠1=∠2=30°,CD=AD=4,
在直角△BCD中,. 作CE⊥AB于點E.在直角△BEC中,∠B=30°,
∴CE=BC=, ∴S△ABC=ABCE=×12×2=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】飛機(jī)在12000米高空飛行時,機(jī)艙外的溫度為-56℃,機(jī)艙內(nèi)的溫度為26℃,則機(jī)艙外的溫度比機(jī)艙內(nèi)低 _____________ ℃。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是邊長為4的正方形,點P從點O沿邊OA向點A運(yùn)動,每秒運(yùn)動1個單位.連結(jié)CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點E作EF∥OA,交OB于點F,連結(jié)FD、BE,設(shè)點P運(yùn)動的時間為.
(1)點E的坐標(biāo)為 (用含的代數(shù)式表示);
(2)試判斷線段EF的長度是否隨點P的運(yùn)動變化而改變?并說明理由;
(3)當(dāng)為何值時,四邊形BEDF的面積為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com