【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點A、B,點P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為d1、d2

(1)當(dāng)P為線段AB的中點時,求d1+d2的值。
(2)直接寫出d1+d2的范圍,并求當(dāng)d1+d2=3時點P的坐標(biāo)。
(3)若在線段AB上存在無數(shù)個P點,使d1+ad2=4(a為常數(shù)),求a的值。

【答案】
(1)

解:對于一次函數(shù)y=2x﹣4,

令x=0,得到y(tǒng)=﹣4;令y=0,得到x=2,

∴A(2,0),B(0,﹣4),

∵P為AB的中點,

∴P(1,﹣2),

則d1+d2=3


(2)

解:①d1+d2≥2;

②設(shè)P(m,2m﹣4),

∴d1+d2=|m|+|2m﹣4|,

當(dāng)0≤m≤2時,d1+d2=m+4﹣2m=4﹣m=3,

解得:m=1,此時P1(1,﹣2);

當(dāng)m>2時,d1+d2=m+2m﹣4=3,

解得:m=,此時P2);

當(dāng)m<0時,不存在,

綜上,P的坐標(biāo)為(1,﹣2)或(


(3)

解:設(shè)P(m,2m﹣4),

∴d1=|2m﹣4|,d2=|m|,

∵P在線段AB上,

∴0≤m≤2,

∴d1=4﹣2m,d2=m,

∵d1+ad2=4,

∴4﹣2m+am=4,即(a﹣2)m=0,

∵有無數(shù)個點,

∴a=2.


【解析】(1)對于一次函數(shù)解析式,求出A與B的坐標(biāo),即可求出P為線段AB的中點時d1+d2的值;
(2)根據(jù)題意確定出d1+d2的范圍,設(shè)P(m,2m﹣4),表示出d1+d2 , 分類討論m的范圍,根據(jù)d1+d2=3求出m的值,即可確定出P的坐標(biāo);
(3)設(shè)P(m,2m﹣4),表示出d1與d2 , 由P在線段上求出m的范圍,利用絕對值的代數(shù)意義表示出d1與d2 , 代入d1+ad2=4,根據(jù)存在無數(shù)個點P求出a的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F(xiàn),使AE=CF,依次連接B,F(xiàn),D,E各點.

(1)求證:△BAE≌△BCF
(2)若∠ABC=50°,則當(dāng)∠EBA=°時,四邊形BFDE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點P的坐標(biāo)為(0,4),直線y=x﹣3與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.
(1)求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加社團的情況,從2010年起,某市教育部門每年都從全市所有學(xué)生中隨機抽取2000名學(xué)生進行調(diào)查,圖①、圖②是部分調(diào)查數(shù)據(jù)的統(tǒng)計圖(參加社團的學(xué)生每人只能報一項)根據(jù)統(tǒng)計圖提供的信息解決下列問題:

(1)求圖②中“科技類”所在扇形的圓心角α的度數(shù)
(2)該市2012年抽取的學(xué)生中,參加體育類與理財類社團的學(xué)生共有多少人?
(3)該市2014年共有50000名學(xué)生,請你估計該市2014年參加社團的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB的頂點A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當(dāng)增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4)

(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1 , 直接寫出點A1的坐標(biāo);
(2)請畫出△ABC繞原點O順時針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫出點A2的坐標(biāo);
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算: +(1﹣ 0﹣4cos45°.
(2)解方程組:

查看答案和解析>>

同步練習(xí)冊答案